数学一对一辅导方案设计
运动会作文600字-说课稿的格式
实用标准文档 
数学一对一辅导方案 
一、 具体辅导计划: 
1.
辅导科目问题分析: 
 懒:学习被动,对学习没有兴趣, 
基础知识掌握不扎实,需要梳理。 
 需要加强心态调整,需要鼓励和自信。 
没有学习目标,需要根据其考试内容,制定相应的学习目标。 
 家里家长没有办法给孩子进行答疑。
2. 辅导思路: 
采取教师“一对一精讲”+“陪读答疑解惑”+“心理辅导”相结合的教学模式。 
 整个教学思路以
查漏补缺、同步教学、巩固提高、归纳总结、强化冲刺为目标,细分如下(具体根据学生
实际情况进行灵
活调整): 
 辅导方案为 :心态、学科、习惯三方面同步跟踪 
3. 授课要点:
1) 前期: 
 主要是针对初中内容查漏补缺,把整个学科漏下的各个知识点补上。这段时
期需要激发学生高度的学习兴
趣,调动学生积极良好的学习情绪,适应高强度规范化学习模式,为后面学
习打好基础铺垫。 
 教师通过对该学生进行综合试卷测评和交流沟通,进一步深入了解她在学习方面
的问题,掌握该学生的思
维特点,制订符合该学生学习特性的个性化学科辅导方案。教师除按时完成教学
内容外,还要有针对性地
在教学中解决现存的细节问题。在此阶段主要以启发、鼓励、表扬、引导为主,
师生双方建立起良好的教
学关系,营造一个严谨而宽松的学习氛围。 
文案大全
实用标准文档 
主要措施: 
旧课程按实际情况查漏补缺,新课程学习内容分解,为该学生制定合理的近期目标; 
教师在安排学习任务时从易到难,让逐步获得成功感,提高学习兴趣; 
 教师教学重点在于激发该学
生的学习兴趣,掌握正确的数学学习方法,养成良好的学习习惯,把一些概念
性的东西理解清楚了,该记
的记,该背的背,把知识点抓起来; 
及时与家长沟通反馈,使家长充分了解该学生的具体学习情况,作好配合工作。 
2) 后期:
在前期的基础上,对考试前期补习进行重点查漏补缺,根据该学生的实际情况适时进行合理指导。  
把之前复习中遗留的问题再次进行针对性查漏补缺; 
 完成一次教学评估,并进行指导补充;
 及时与家长沟通反馈,使家长随时充分了解该学生的具体学习情况,作好配合工作; 
3)
备注: 
假期是一个学科体统地查漏补缺的黄金时间段,根据目前该学生的实际情况,必须加强强化训练
,题量也
要上去,并作一定要求地陪读答疑,以配合一对一教师精讲,及时做到内化。学习管理师和任课
教师必须
严格要求学生,家长必须配合中心教学,并及时反馈学生学习情况。 
4.
◆学习管理 
1) 增加学习动力的手段: 
 制定合理的近期目标并获得成功感
 对学习方法进行改善,提升一对一辅导与自我学习的效果。 
辅导老师有针对性的辅导,尽快提升英语和语文和数学的学习兴趣,进一步获得自信心。 
2)
学习方法训练内容: 
 1、适合该学生的思维模式、教学的学习方法; 
文案大全
实用标准文档 
 2、阶段性自我总结与自我分析能力; 
3、自学能力和主动学习能力; 
4、学习制订合理学习计划与学习目标,初期先由老师指导制定,后期自己指定由老师评估。 
3)
心理辅导: 
班主任:时刻关注该学生的学习情况和情绪变化,及时与辅导老师、心理老师、咨询老师交流孩子的情况。
 安排心理老师定期与孩子沟通,了解孩子的心理状态并及时解决心理问题,帮助该学生形成极良好的
心态。
心理老师及时与学习管理师沟通,为老师的教学和学管师的工作提供建议。 
家庭的配合: 
学习管理师(班主任)随时与家长保持沟通,了解孩子在家庭的表现情况,并及时向家长
反馈该学生在辅
导中心的学习近况。 学习管理师随时保持与家长在家庭教育方面的交流。
4) 最终辅导目标: 
 明确学习目的,掌握各学科正确的学习方法,培养良好的学习习惯
,培养孩子的自觉性,达到整体学习能
力的提升,最终取得最佳的成绩。 
 学习能力的提升
是一个持久的动态过程,需要该学生、家长、辅导中心三方共同作出努力,本方案仅为提
纲性的计划,在
实施过程将视具体情况进行调整,以期取得更明显的效果。 
5. 授课安排: 
授课重点: 
 巩固基础,查漏补缺,传授方法,答疑;针对期中考试、期末考试、冲刺一模考试后会
根据学生具体
情况,做相应的调整。 
6. 课时安排: 
1)
第一轮:专题训练——共18次课,36课时 
A. 数与式(共2次课,4课时) 
文案大全
实用标准文档 
a) 实数:核心是数学思维的转换——从123到abc
i. 实数的相关概念:数轴、相反数、倒数、绝对值、有理数、无理数、平方根、算术平方
根
、立方根、非负数、科学计算法、近似数、有效数字、多种分类方法。 
ii. 实数的运算
1. 运算律:交换律、结合律、分配率2.运算顺序3.实数大小比较4.实数的加减乘除、
乘方、开方的意义和运算 
b) 代数式 
i. 
ii. 
iii.
iv. 
v. 
vi. 
代数式的有关概念、分类和有意义的条件
整式:整式运算、因式分解 
分式:基本性质、运算 
二次根式:概念、性质、运算
恒等变形:添去括号、拆补项、公式运用、配方法、待定系数法运用。
化简求值:绝对值、整式、分式、二次根式,数轴法、配方、换元、代换、公式条件。 
B.
方程与不等式(共3次课,6课时) 
a) 方程与方程组 
i. 整式方程 
1.
等式2个基本性质 
2. 方程及方程的解 
ii. 
iii. 
iv.
分式方程:定义和解法 
方程组:一次、二次方程组的解法 
一元二次方程
5. 判别式:∆=b
2
-4ac; 
3. 一元一次方程 
4.
一元二次方程:求根公式 
文案大全 
实用标准文档 
6. 根于系数
的关系:x
1
+x
2
=-ba,x
1
*x
2
=ca。 
v. 方程和方程组的应用 
7. 分析方法:读题断句法、图示法、列表法;
8. 解题步骤:一设、二列、三解、四答; 
9.
寻找数量关系的方法:抓关键字、确定运算关系、确定运算层次。 
vi. 
vii.
方程的将次、消元、换元功能 
方程与代数式的综合。 
b) 不等式与不等式组
i. 
ii. 
iii. 
iv.
不等式:基本性质和一元一次不等式。 
不等式组:一元一次不等式组 
不等式组应用
方程不等式组 
C. 函数及其图像(共3次课,6课时) 
a) 直角坐标系
i. 
ii. 
iii. 
iv. 
v.
直角坐标系的三要素 
特殊位置点 
对称 
点距
已知点的坐标求距离、对称、画
点 
c) 三类函数:一般解析式、结构、系数、令=
0的方程解、求函数解析式、观察函数图像、将
点的坐标带入函数解析式、函数与代数的综合、函数与几
何的综合。 
vi. 求点的坐标 
b) 函数有关的概念 
vii.
viii. 
ix. 
x. 
定义 
表示方法
自变量的取值范围 
函数的图像 
文案大全 
实用标准文档
xi. 
xii. 
xiii. 
反比例函数
一次函数(特殊形式——正比例函数) 
二次函数 
D.
统计初步(共1次课,2课时) 
a) 统计概念:总体、个体、样本、样本容量。 
b)
基本统计量:平均数、众数、中位数、方差、标准差。 
c) 频率分布:频率分布、直方图。
d) 平行线:性质、判定、相关知识。 
E. 三角形(共3次课,6课时) 
a)
与三角形相关的角和线 
b)
三角形分类:按角分、按边分、特殊——直角三角形、等腰三角形、等边三角形。 
c)
三角形全等:判定——SSS、ASA、SAS、AAS、HL;性质——对应边、对应角角相等。
d) 三角形相似:6大判定定理;4个相似性质;重心的概念和相关计算。 
e)
(正)多边形 
i. 
ii. 
f)
平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形。 
正多边形的定义、性质和计算。
比例线段:基本性质、等比性质、合比性质、平行线截比关系、三角形中位线比例关系。 
g)
简单几何体:长方体、正棱柱、正棱锥、圆柱、圆锥。 
h) 锐角的三角函数 
i.
ii. 
iii.
定义:在Rt中,正弦=对边斜边,余弦=临边斜边,正切=对边临边,余切=临边对边。 
基
本关系:sin
2
A+cos
2
A=1,tanA*cotA=1,tanA
=sinAcosA=1cotA。 
余角关系:sin(90
0
-A)=cosA,
cos(90
0
-A)=sinA,tan(90
0
-A)=cotA,co
t(90
0
-A)=tanA。 
文案大全 
实用标准文档
i) 
j)
特殊角的三角函数:正弦、余弦、正切、余切,00、300、450、600、900。
解直角三角形:在Rt
量。
中,除去直角外的5个量,已知其中2个量(至少一条边)求其它
F.
点和圆(共2次课,4课时) 
c) 点和圆的关系和量的计算 
d) 圆的相关性质
e) 直线和圆的位置关系:圆心到直线的距离与半径的大小关系 
f)
和圆有关的比例线段:相交弦定理、切割线定理、割线定理。 
g)
两圆位置关系:外离、外切、相交、内切、内含。 
G. 常见辅助线的添加方式(共1次课,2课时)
h) 三角形中常见的辅助线; 
i) 
j) 
梯形问题常见辅助线;
有关中位线问题的辅助线; 
k)
对于含300、600、450角的几何图形,常见的辅助线; 
l)
可构造平行四边形或特殊的平行四边形阶梯; 
m)
由已知线段的比,求证另外线段的比,通常做平行线,构造平行线分线段成比例的基本图形; 
n)
直角三角形中常见的辅助线; 
o) 圆中常见的辅助线; 
p)
圆中切线问题常见的辅助线; 
q) 两圆位置关系中常见的辅助线; 
r)
正多边形中常见的辅助线。 
2) 第二轮:题型训练——共36次课,72课时 
文案大全
实用标准文档 
a) 选择题的解题方法
比较排除、带入计算、简化过程,图形直观。 
b) 填空题的解题策略
细心计算,草稿不乱,清晰检查,思考两端。 
c) 怎样解一般解答题
标准规范、思路简单、知识清晰、总结沉淀。 
d) 怎样解综合应用题
步步为营、找准关键、思路清晰、向前推算。 
3)
第三轮:应试模拟——共12次课,24课时 
a) 6套试题的检测、讲解和分析。 
b)
通过模拟考试进入应试状态。 
c)
通过模拟考试查漏补缺,寻找考试过程中的细节问题和可能的错误及时纠正。 
d)
通过模拟考试学习和熟练掌握不同类型试题的解题技巧。 
e)
通过模拟考试学习和掌握应试时间管理和心态调整。 
f) 通过模拟考试学习和掌握应试答题技巧。
 
 
文案大全