鸡兔同笼的方程公式
祝福的歌曲-端午节的来历
鸡兔同笼的方程公式
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数 总只数—兔的只数=鸡的只数
解法4(方程):X=总脚数÷2—总头数(X=兔的只数)
总只数—兔的只数=鸡的只数
解法5(方程):X=(
总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的
脚数)(X=兔的只数)
总只数—兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-
鸡
的脚数)(X=鸡的只数)
总只数-鸡的只数=兔的只数
3种算法
(1).鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2
兔的只数=鸡兔总只数-鸡的只数
(2).兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2
鸡的只数=鸡兔总只数-兔总只数
(3).总腿数2-总头数=兔只数
总只数-兔只数=鸡的只数
鸡兔同笼问题五种基本公式和例题讲解
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-
每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14只兔; 36-14=22 只鸡。
解二 (4×36-100)÷(4-2)=22只鸡; 36-22=14 只兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数
总头数-
兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
(每只兔的脚数×总头数-
鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-
实得总分数)÷(每只合格品得分数+每只不合
格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格
品得
分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工
资。每生产一个合格品记4
分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了100
0只灯泡,
共得3525分,问其中有多少个灯泡不合格?”
解一
(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二
1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”
,运到完好无损者每只给运费××元,
破损者不仅不给运费,还需要赔成本××元„„。它的解法显然可
套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可
用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只
鸡兔脚
数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚
数之差)÷(每只鸡兔
脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔
各是多少
只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)„„„„„„„„„„„鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)„„„„„„„„„„兔(答略)