matlab数学实验习题全部答案(胡良剑)

温柔似野鬼°
843次浏览
2021年01月30日 00:55
最佳经验
本文由作者推荐

天经地义的意思-河套平原

2021年1月30日发(作者:抒情音乐)

数学实验答案

%Page20,ex1

(5)
等于
[exp(1),exp(2);exp(3),exp(4)]

(7) 3=1*3, 8=2*4

(8) a
为各列最小值,
b
为最小值所在的行号


(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture

(11)
答案表明:编址第
2
元素满足不等式
(30>=20)< br>和编址第
4
元素满足不等式
(40>=10)

(12)
答案表明:
编址第
2
行第
1
列元素满足不等式
(3 0>=20)
和编址第
2
行第
2
列元素满足不
等式
(40>=10)

%Page20, ex2

(1)a, b, c
的值尽管都是
1


但数据类型分别为数值,字符,

逻辑,

注意
a

c
相等,


他们不等于
b

(2)double(fun)
输出的 分别是字符
a,b,s,(,x,)

ASCII



%Page20,ex3

>> r=2;p=0.5;n=12;

>> T=log(r)/n/log(1+0.01*p)

T =

11.5813

%Page20,ex4

>> x=-2:0.05:2;f=x.^4-2.^x;

>> [fmin,min_index]=min(f)

fmin =

-1.3907 %
最小值


min_index =

54 %
最小值点编址


>> x(min_index)

ans =

0.6500 %
最小值点


>> [f1,x1_index]=min(abs(f)) %
求近似根
--
绝对值最小的点


f1 =

0.0328

x1_index =

24

>> x(x1_index)

ans =

-0.8500

>> x(x1_index)=[];f=x.^4-2.^x; %
删去绝对值最小的点以求函数绝对值次小的点


>> [f2,x2_index]=min(abs(f)) %
求另一近似根
--
函数绝对值次小的点


f2 =

0.0630

x2_index =

65

1


>> x(x2_index)

ans =

1.2500

%Page20,ex5

>> z=magic(10)

z =

92 99 1 8 15 67 74 51 58 40

98 80 7 14 16 73 55 57 64 41

4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28

86 93 25 2 9 61 68 75 52 34

17 24 76 83 90 42 49 26 33 65

23 5 82 89 91 48 30 32 39 66

79 6 13 95 97 29 31 38 45 72

10 12 94 96 78 35 37 44 46 53

11 18 100 77 84 36 43 50 27 59

>> sum(z)

ans =

505 505 505 505 505 505 505 505 505 505
>> sum(diag(z))

ans =

505

>> z(:,2)/sqrt(3)

ans =

57.1577

46.1880

46.7654

50.2295

53.6936

13.8564

2.8868

3.4641

6.9282

10.3923

>> z(8,:)=z(8,:)+z(3,:)

z =

92 99 1 8 15 67 74 51 58 40

98 80 7 14 16 73 55 57 64 41

4 81 88 20 22 54 56 63 70 47

85 87 19 21 3 60 62 69 71 28

86 93 25 2 9 61 68 75 52 34

17 24 76 83 90 42 49 26 33 65

23 5 82 89 91 48 30 32 39 66


2



83 87 101 115 119 83 87 101 115 119

10 12 94 96 78 35 37 44 46 53

11 18 100 77 84 36 43 50 27 59

3


%Page 40 ex1

先在编辑器窗口写下列
M
函数,保存为
eg2_1.m

function [xbar,s]=ex2_1(x)

n=length(x);

xbar=sum(x)/n;

s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));

例如


>>x=[81 70 65 51 76 66 90 87 61 77];

>>[xbar,s]=ex2_1(x)

xbar =

72.4000

s =

12.1124

%Page 40 ex2

s=log(1);n=0;

while s<=100

n=n+1;

s=s+log(1+n);

end

m=n

计算结果
m=37

%Page 40 ex3

clear;

F(1)=1;F(2)=1;k=2;x=0;

e=1e-8; a=(1+sqrt(5))/2;

while abs(x-a)>e

k=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);
end

a,x,k

计算至
k=21
可满足精度


%Page 40 ex4

clear;tic;s=0;

for i=1:1000000

s=s+sqrt(3)/2^i;

end

s,toc

tic;s=0;i=1;

while i<=1000000

s=s+sqrt(3)/2^i;i=i+1;


4


end

s,toc

tic;s=0;

i=1:1000000;

s=sqrt(3)*sum(1./2.^i);

s,toc

%Page 40 ex5

t=0:24;

c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...

31 32 31 29 27 25 24 22 20 18 17 16];

plot(t,c)

%Page 40 ex6

%(1)

x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)

y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2])

%(2)
参数方法


t=linspace(0,2*pi,100);

x=2*cos(t);y=3*sin(t); plot(x,y)

%(3)

x=-3:0.1:3;y=x;

[x,y]=meshgrid(x,y);

z=x.^2+y.^2;

surf(x,y,z)

%(4)

x=-3:0.1:3;y=-3:0.1:13;

[x,y]=meshgrid(x,y);

z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;

surf(x,y,z)

%(5)

t=0:0.01:2*pi;

x=sin(t);y=cos(t);z=cos(2*t);

plot3(x,y,z)

%(6)

theta=lins pace(0,2*pi,50);fai=linspace(0,pi/2,20);

[theta,fai]=meshgrid(theta,fai);

x=2*sin(fai).*cos(theta);

5


y=2*sin(fai).*sin(theta);z=2*cos(fai);

surf(x,y,z)

%(7)

x=linspace(0,pi,100);

y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);

plot(x,y1,x,y2,x,y3)

%page41, ex7

x=-1.5:0.05:1.5;

y=1.1*(x>1. 1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);

plot(x,y)

%page41,ex8

分别使用
which trapz, type trapz, dir C:MA
TLAB7toolboxmatlabdatafun

%page41,ex9

clear;close;

x=-2:0.1:2;y=x;

[x,y]=meshgrid(x,y);

a=0.5457;b=0.7575;

p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);

p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);

p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x +y<=-1);

mesh(x,y,p)

%page41, ex10

lookfor lyapunov

help lyap

>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16];

>> X=lyap(A,C)

X =

1.0000 -1.0000 -0.0000

-1.0000 2.0000 1.0000

-0.0000 1.0000 7.0000

6


%Chapter 3

%Exercise 1

>> a=[1,2,3];b=[2,4,3];a./b,a.b,a/b,ab

ans =

0.5000 0.5000 1.0000

ans =

2 2 1

ans =

0.6552 %
一元方程组
x[2,4,3]=[1,2,3]
的近似解


ans =

0 0 0

0 0 0

0.6667 1.3333 1.0000

%
矩阵方程
[1, 2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]< br>的特解


%Exercise 2(1)

>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];

>> rank(A), rank([A,b]) %[A,b]
为增广矩阵


ans =

3

ans =

3 %
可见方程组唯一解


>> x=Ab

x =

2.3830

1.4894

2.0213

%Exercise 2(2)

>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1];

>> rank(A), rank([A,b])

ans =

3

ans =

3 %
可见方程组唯一解


>> x=Ab

x =

-0.4706

-0.2941

0

7


%Exercise 2(3)

>> A=[4 1;3 2;1 -5];b=[1;1;1];

>> rank(A), rank([A,b])

ans =

2

ans =

3 %
可见方程组无解


>> x=Ab

x =

0.3311

-0.1219 %
最小二乘近似解


%Exercise 2(4)

>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%
注意
b
的写法


>> rank(a),rank([a,b])

ans =

3

ans =

3 %rank(a)==rank([a,b])<4
说明有无穷多解


>> ab

ans =

1

0

1

0 %
一个特解


%Exercise 3

>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]';

>> x=null(a),x0=ab

x =

-0.6255

0.6255

-0.2085

0.4170

x0 =

1

0

1

0

%
通解
kx+x0

%Exercise 4

8


>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95];

>> x1=a*x, x2=a^2*x, x10=a^10*x

>> x=x0;for i=1:1000,x=a*x;end,x

x =

0.8333

0.1667

>> x0=[0.8 0.2]';

>> x=x0;for i=1:1000,x=a*x;end,x

x =

0.8333

0.1667

>> [v,e]=eig(a)

v =

0.9806 -0.7071

0.1961 0.7071

e =

1.0000 0

0 0.9400

>> v(:,1)./x

ans =

1.1767

1.1767 %
成比例,说明
x
是最大特征值对应的特征向量


%Exercise 5

%
用到公式
(3.11)(3.12)

>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]';

>> C=B/diag(x)

C =

0.2400 0.4000 0.0500

0.0900 0.2000 0.0100

0.1200 0.0400 0.0900

>> A=eye(3,3)-C

A =

0.7600 -0.4000 -0.0500

-0.0900 0.8000 -0.0100

-0.1200 -0.0400 0.9100

>> D=[17 17 17]';x=AD

x =

37.5696

25.7862

24.7690

%Exercise 6(1)

9


>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a)

ans =

-94

ans =

0.2553 -0.0213 0.0426

0.1596 -0.1383 -0.2234

0.1809 -0.2234 -0.0532

v =

0.0185 -0.9009 -0.3066

-0.7693 -0.1240 -0.7248

-0.6386 -0.4158 0.6170

d =

-3.0527 0 0

0 3.6760 0

0 0 8.3766

%Exercise 6(2)

>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a)

ans =

1

ans =

2.0000 -2.0000 1.0000

1.0000 -1.0000 1.0000

2.0000 -3.0000 2.0000

v =

-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i

-0.5773 0.5774 0.5774

-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000i

d =

1.0000 0 0

0 1.0000 + 0.0000i 0

0 0 1.0000 - 0.0000i

%Exercise 6(3)

>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]

A =

5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

>> det(A),inv(A), [v,d]=eig(A)

ans =

1

10


ans =

68.0000 -41.0000 -17.0000 10.0000

-41.0000 25.0000 10.0000 -6.0000

-17.0000 10.0000 5.0000 -3.0000

10.0000 -6.0000 -3.0000 2.0000

v =

0.8304 0.0933 0.3963 0.3803

-0.5016 -0.3017 0.6149 0.5286

-0.2086 0.7603 -0.2716 0.5520

0.1237 -0.5676 -0.6254 0.5209

d =

0.0102 0 0 0

0 0.8431 0 0

0 0 3.8581 0

0 0 0 30.2887

%Exercise 6(4)(

n=5
为例
)

%
关键是矩阵的定义


%
方法一(三个
for



n=5;

for i=1:n, a(i,i)=5;end

for i=1:(n-1),a(i,i+1)=6;end

for i=1:(n-1),a(i+1,i)=1;end

a
%
方法二(一个
for



n=5;a=zeros(n,n);

a(1,1:2)=[5 6];

for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];end

a(n,[n-1 n])=[1 5];

a
%
方法三(不用
for



n=5;a=diag(5*ones(n,1));

b=diag(6*ones(n-1,1));

c=diag(ones(n-1,1));

a=a+[zeros(n-1,1 ),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)]

%
下列计算


>> det(a)

ans =

665

>> inv(a)

ans =

0.3173 -0.5865 1.0286 -1.6241 1.9489

-0.0977 0.4887 -0.8571 1.3534 -1.6241

11



0.0286 -0.1429 0.5429 -0.8571 1.0286

-0.0075 0.0376 -0.1429 0.4887 -0.5865

0.0015 -0.0075 0.0286 -0.0977 0.3173

>> [v,d]=eig(a)

v =

-0.7843 -0.7843 -0.9237 0.9860 -0.9237

0.5546 -0.5546 -0.3771 -0.0000 0.3771

-0.2614 -0.2614 0.0000 -0.1643 0.0000

0.0924 -0.0924 0.0628 -0.0000 -0.0628

-0.0218 -0.0218 0.0257 0.0274 0.0257

d =

0.7574 0 0 0 0

0 9.2426 0 0 0

0 0 7.4495 0 0

0 0 0 5.0000 0

0 0 0 0 2.5505

%Exercise 7(1)

>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a)

v =

0.0185 -0.9009 -0.3066

-0.7693 -0.1240 -0.7248

-0.6386 -0.4158 0.6170

d =

-3.0527 0 0

0 3.6760 0

0 0 8.3766

>> det(v)

ans =

-0.9255 %v
行列式正常
,
特征向量线性相关,可对角化


>> inv(v)*a*v %
验算


ans =

-3.0527 0.0000 -0.0000

0.0000 3.6760 -0.0000

-0.0000 -0.0000 8.3766

>> [v2,d2]=jordan(a) %
也可用
jordan

v2 =

0.0798 0.0076 0.9127

0.1886 -0.3141 0.1256

-0.1605 -0.2607 0.4213 %
特征向量不同


d2 =

8.3766 0 0

0 -3.0527 - 0.0000i 0

12



0 0 3.6760 + 0.0000i

>> v2a*v2

ans =

8.3766 0 0.0000

0.0000 -3.0527 0.0000

0.0000 0.0000 3.6760

>> v(:,1)./v2(:,2) %
对应相同特征值的特征向量成比例


ans =

2.4491

2.4491

2.4491

%Exercise 7(2)

>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)

v =

-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i

-0.5773 0.5774 0.5774

-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000i

d =

1.0000 0 0

0 1.0000 + 0.0000i 0

0 0 1.0000 - 0.0000i

>> det(v)

ans =

-5.0566e-028 -5.1918e-017i %v
的行列式接近
0,
特征向量线性相关,不可对角化


>> [v,d]=jordan(a)

v =

1 0 1

1 0 0

1 -1 0

d =

1 1 0

0 1 1

0 0 1 %jordan
标准形不是对角的,所以不可对角化


%Exercise 7(3)

>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]

A =

5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

>> [v,d]=eig(A)

13


v =

0.8304 0.0933 0.3963 0.3803

-0.5016 -0.3017 0.6149 0.5286

-0.2086 0.7603 -0.2716 0.5520

0.1237 -0.5676 -0.6254 0.5209

d =

0.0102 0 0 0

0 0.8431 0 0

0 0 3.8581 0

0 0 0 30.2887

>> inv(v)*A*v

ans =

0.0102 0.0000 -0.0000 0.0000

0.0000 0.8431 -0.0000 -0.0000

-0.0000 0.0000 3.8581 -0.0000

-0.0000 -0.0000 0 30.2887

%
本题用
jordan
不行
,
原因未知


%Exercise 7(4)
参考
6(4)

7(1),



%Exercise 8
只有
(3)
对称
,
且特征值全部大于零
,
所以是正定矩阵
.

%Exercise 9(1)

>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]

>> rank(a)

ans =

3

>> rank(a(1:3,:))

ans =

2

>> rank(a([1 2 4],:)) %1,2,4
行为最大无关组


ans =

3

>> b=a([1 2 4],:)';c=a([3 5],:)';

>> bc %
线性表示的系数


ans =

0.5000 5.0000

-0.5000 1.0000

0 -5.0000

%Exercise 10

>> a=[1 -2 2;-2 -2 4;2 4 -2]

>> [v,d]=eig(a)

14


v =

0.3333 0.9339 -0.1293

0.6667 -0.3304 -0.6681

-0.6667 0.1365 -0.7327

d =

-7.0000 0 0

0 2.0000 0

0 0 2.0000

>> v'*v

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0

0.0000 0 1.0000 %v
确实是正交矩阵


%Exercise 11

%
设经过
6
个电阻的电流分别为
i1, ..., i6.
列方程组如下


%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0;

%i1=i3+i4;i5=i2+i3;i6=i4+i5;

%
计算如下


>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0; 1 -1 0 0 0 0 -4 0 0;

0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3; 0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;

0 0 0 0 0 0 -1 -1 1];

>>b=[20 5 0 0 0 0 0 0 0]'; Ab

ans =

13.3453

6.4401

8.5420

3.3274

-1.1807

1.6011

1.7263

0.4204

2.1467

%Exercise 12

>> A=[1 2 3;4 5 6;7 8 0];

>> left=sum(eig(A)), right=sum(trace(A))

left =

6.0000

right =

6

>> left=prod(eig(A)), right=det(A) %
原题有错
, (-1)^n
应删去


left =

15



27.0000

right =

27

>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3)) *(A-p(3)*eye(3,3))

fA =

1.0e-012 *

0.0853 0.1421 0.0284

0.1421 0.1421 0

-0.0568 -0.1137 0.1705

>> norm(fA) %f(A)
范数接近
0
ans =

2.9536e-013



16

天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原


天经地义的意思-河套平原