八年级数学上册第2章三角形所有知识点总结和常考题型练习题湘教版.doc
余年寄山水
818次浏览
2021年01月30日 18:45
最佳经验
本文由作者推荐
-
三角形知识点
一、三角形及其有关概念
1
、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形
的边;
相邻两边的公共端点叫做三角形的顶点;
相邻两边所组成的角叫做三角形的内角,
简称三角形的角。
2
、三角形的表示:
三角形用符号“△”表示,顶点是
A
、
B
、
C
的三角形记作“△
ABC
”
,读作“三角 形
ABC
”
。
3
、三角形的三边关系:
(
1
)三角形的任意两边之和大于第三边。
(
2
)三角形的任意两边之差小于第三边。
(
3
)作用:
①判断三条已知线段能否组成三角形
②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4
、三角形的内角的关系:
(
1
)三角形三个内角和等于
180
°。
(
2
)直角三角形的两个锐角互余。
5
、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6
、三角形的分类:
(1)
三角形按边分类:
不等边三角形
三角形
底和腰不相等的等腰三角形
等腰三角形
等边三角形
(2)
三角形按角分类:
直角三角形(有一个角为直角的三角形)
三角形
锐角三角形(三个角都是锐角的三角形)
斜三角形
钝角三角形(有一个角为钝角的三角形)
还有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
7
、三角形的三种重要线段:
(
1
)三角形的角平分线:
定义:在三角形中,一个内角的平分线 与它的对边相交,这个角的顶点与交点之间的线段叫做三角形
的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。
(
2
)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(
3
)三角形的高线:
定义:从三角形一个顶点向它的对边所在直 线作垂线,顶点和垂足之间的线段叫做三角形的高线(简
称三角形的高)
。
性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形
的三 条高线的交点在它的直角顶点;钝角三角形的三条高所在的直线的交点在它的外部;
8
、三角形的面积:
三角形的面积
=
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。
性质:全等图形的形状和大小都相同。
三、全等三角形
1
、全等三角形及有关概念:
能够完全重合的两个三角形叫做全等三角形。两个三角 形全等时,互相重合的顶点叫做对应顶点,互
相重合的边叫做对应边,互相重合的角叫做对应角。
2
、全等三角形的表示:
全等用符号“≌”表示,读作“全等于”。如△
ABC
≌△
DEF
,读作“三角形
ABC
全等于 三角形
DEF
”
。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3
、全等三角形的性质:全等三角形的对应边相等,对应角相等。
4
、三角形全等的判定:
(
1
)边边边:有三边对应相等 的两个三角形全等(可简写成“边边边”或“
SSS
”
)
。
(
2
)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA
”
)
1
×底×高
2