扇形面积计算公式的应用

绝世美人儿
709次浏览
2021年01月31日 15:44
最佳经验
本文由作者推荐

门店管理制度-电影走路上学

2021年1月31日发(作者:文艺座谈会)

扇形面积的计算公式的应用

我们知道扇形面积的计算公式为
S
扇形

为圆心角.
由于在半径为
R
的圆中,

的圆心角所对的弧长的计算公式为
l

1
所以
S
扇形
=
lR
.下面结合具体 问题体会公式的应用:

2
n
πR

180
nπR
2
,其中
R
为扇形的半径,
n
360
【例
1

(2007


金华市
)
如图所示为 一弯形管道,
其中心线上一段圆弧
AB

已知半径
OA=60
㎝,∠
AOB=108°
,则管道的长度
(
即弧
AB
的长
)












cm(
结果保留
π
)


1
解析:若一条弧所对的圆心角是

,
半径是
R,
则弧长公式为
AB
的长
n

R

, 所以弧
180
108


60
=36π.

180
答案:

36π

【例
2
】如图< br>2
所示,有一直径是
1
米的圆形铁皮,要从中剪出一个最大的
圆心角是
90°
的扇形
ABC
.
求:

A
B
C


2
(1)
被剪掉阴影部分的面积
.
(2)
用所留的扇形铁皮围成一个 圆锥,该圆锥的底面半径是多少?
(
结果可用
根号表示
)
分析:圆面积、扇形面积、弧长公式、圆锥的侧面展开
.
(1)
阴影部分的 面积是用圆的面积减去一个圆心角是
90°
的扇形的面积,
关键
是求扇形的半 径;


1

/
3

门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学


门店管理制度-电影走路上学