《反比例函数的意义》教学设计

绝世美人儿
799次浏览
2021年02月13日 19:42
最佳经验
本文由作者推荐

-

2021年2月13日发(作者:电灯)


《反比例函数的意义》教学设计




一、内容和内容解析



1


.内容



反比例函数的意义.



2


.内容解析



本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础


上 ,


通过实际例子帮助学生认识并归纳出反比例函数的意义.


反比 例函数作为初中三个基本


函数(还有一次函数和二次函数)中最特殊的一个,明确其意义 是最为重要的内容.另外本


节课的学习可以给学生研究其它函数做好引领工作,


帮助他们养成良好的思维品质和学习习


惯.


< /p>


学生需要对从实际问题中得出的三个关系式进行观察、


归纳,


结合已学知识来得出反比


例函数的概念,


并 且深入的理解其意义.


在此过程中,教师需要给学生一些必要的指引,具


体到课堂教学实际中就是通过问题的引领,


帮助学生做好问题的探究.


学生是这个环节的主


体,


教师是辅助者,


在实际教学中要尊重学生所提出的问题和看法,


不应该把教师的观点强


加给学生.



基于以上分析,确定本节 课的教学重点为:理解反比例函数的概念.



二、目标和目标解析



1


.教学目标




1


)理解反比例函数的意义;


< /p>



2


)能够根据已知条件确定反比例函数 的解析式.



2


.目标解析



达成目标(


1


)的标志是:通过对实际问题和数学问题的分析 ,抽象概括得出反比例函


数的概念,知道自变量和对应函数成反比例的特征.

< p>


达成目标(


2


)的标志 是:能根据问题中的变量关系


,


确定反比例函数的解析式.



三、教学问题诊断分析



学生已经学习过了一次函数、二次函数、


分式等预备知识,对函数的图象、


性质和特征


具有了一定的认知能力.


再加上 小学已经学习过的反比例关系,


学生对反比例函数的引入不


会感 到突然.


在对实际问题和数学问题进行分析过程中,


需加强对函 数概念的理解:


对于自


精选



变量每一个确定的值,


有唯一确定的值与之对应.


反比例函数与一次函数、


二次函数的不同


在于两个变量的乘积 为定值.


同时,


学习过程中要回顾类比反比例关系,

< p>
分式的概念及其运


算.



但是反比例函数与学生已学过的一次函数、


二次函数有着根本的不同.

< br>虽然从形式上和


正比例函数很类似,


但是其自变量取值范 围不再是全体实数,


所以相比于学生熟悉的函数类


型,反比例函 数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.



本课的教学难点是:抽象得到反比例函数概念的过程.



四、教学过程设计



1


.创设情境,引入新知


< p>
问题


1


京广高铁全程为


2 298km


,某次列车的平均速度


v


( 单位:


km/h


)与此次列车的


全程运 行时间


t


(单位:


h

< br>)有什么样的关系?



问题


2< /p>


冷冻一个


0


℃的物体,使它的温度下降到 零下


273


℃,每分钟变化的温度



(单


位:℃)与冷冻时间



(单位:分)有什么样的关系?



师生 活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒


学生关 注零下


273


℃的表示方法.



设计意图:


用实际问题引出现实中的反比例关系,

为后续的反比例函数的意义教学做好


铺垫.


创设问题情境,


让学生感受量与量之间的函数关系,


体会实际问题中蕴涵的函数 关系,


激发探究兴趣.



2


.观察感知,理解概念



针对学生的答案,提出一系列问题:



问题


3


这些关系式有什么共同点?


< /p>


问题


4


这两个量之间是否存在函数关系?



问题


4.1


这个变化过程中的常量和变量分别是什么?



问题


4.2


变量


x


< p>
y


在什么范围内变化?



问题


4.3 y


x


的函数吗?



师生活动:教师针 对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,


以推动对问题的进一 步思考.


开始渗透研究函数的一般步骤,


帮助学生探究函数关系 .


学生


需要调动原有知识储备,经过思考和讨论来回答问题.< /p>



设计意图:


通过对问题的讨论分析,< /p>


让学生学会用函数的观点分析生活中变量之间的关


系,并能够用反 比例关系式表示出来,初步建立反比例函数的模型.



精选


-


-


-


-


-


-


-


-