初中数学知识点归纳

萌到你眼炸
736次浏览
2021年02月18日 19:51
最佳经验
本文由作者推荐

-

2021年2月18日发(作者:最长寒假)


------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


精选教育类文档,如果您需要使用本文档,请点击 下载,


祝您生活愉快,工作顺利,万事如意!




马上就要中考了,祝大家中考都考上一个理想的高中!


欢迎同学们下载,希望能帮助到你们!




初中数学知识点归纳




第一章:实数



重要复习的知识点:




一、实数的分类:






正整数






整数









负 整数




有理数





有限小数或无限循环小





< p>


实数




正分数




分数

< p>






负分数







正无理数




无理数




无限不循环小数




负无理数



< /p>


------


《吾爱网络项目》精选教育类应用文档,如需本文, 请下载


-----


1


、有理数:任何 一个有理数总可以写成


整数,这是有理数的重要特征。



2


、无理数:初中遇到的无理数有三种:开不尽的方根,如

< p>
2



3


4



特定结构的不限环无限小数,如


1.101


……;特定意义的


数,如π、


sin

< p>
45


°等。



3


、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后


才 下结论。



二、实数中的几个概念


< /p>


1


、相反数:只有符号不同的两个数叫做互为相反数。

< p>



1


)实数

< p>
a


的相反数是


-a





2



a



b


互为相反数



a+b=0


2


、倒数:




1


)实数


a



a



0


)的 倒数是



3


)注意

0


没有倒数



3


、绝对值:




1


)一个数


a


的绝对值有以下三种情况:



p


的形式,其中


p



q


是互质的


q


1


;(


2



a



b


互为倒数



ab



1



a



a


,


< /p>


a




0


,




a

< p>
,



a



0


a



0

a



0




2


)实数的绝对值是一个非负数,从数轴上看,一个实数的绝 对值,就


是数轴上表示这个数的点到原点的距离。


< p>


3


)去掉绝对值符号(化简)必须要对绝对值符 号里面的实数进行数性


(正、负)确认,再去掉绝对值符号。



4



n


次方根



------


《吾爱网络项目》精选 教育类应用文档,如需本文,请下载


-----


< p>
1


)平方根,算术平方根:设


a

< br>≥


0


,称


的算术平方根。




2

< p>
)正数的平方根有两个,它们互为相反数;


0


的平 方根是


0


;负数没


有平方根。




3


)立方根:


3


a


叫实数


a


的立方根。




4


)一个正数有一个正的立方根;


0


的立 方根是


0


;一个负数有一个负


的立方根 。



三、实数与数轴



1


、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方


向、单位长度是数轴的三要素。



2


、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,


而 每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一


一对应的关系。< /p>



四、实数大小的比较



1


、在数轴上表示两个数,右边的数总比左边的数大。



2


、正数大于


0


;负数小于


0


;正数大于一切负数;两个负数绝对值大的


反而小。



五、实数的运算



1


、加法:




1


)同号两数相加,取原来的符号,并把它们的绝对值相加;




2


)异号 两数相加,取绝对值大的加数的符号,并用较大的绝对值减去


较小的绝对值。可使用加法 交换律、结合律。



2


、减法:



减去一个数等于加上这个数的相反数。



a



a


的平方根,

< br>a



a


------

< p>
《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


3


、乘法:




1


)两数相乘,同号取正,异号取负,并把绝对值相乘。




2



n


个实数相乘,有一个因数为


0


,积就为


0


;若


n

< p>
个非


0


的实数相


乘,积的 符号由负因数的个数决定,当负因数有偶数个时,积为正;当负


因数为奇数个时,积为负 。




3


)乘 法可使用乘法交换律、乘法结合律、乘法分配律。



4


、除法:




1


)两数相除,同号得正,异号得负,并把绝对值相除。




2


)除以一个 数等于乘以这个数的倒数。




3



0


除以任何数都等于

0



0


不能做被除数。

< p>


5


、乘方与开方:乘方与开方互为逆运算。



6


、实数的运算顺序:乘方、开方为三级 运算,乘、除为二级运算,加、


减是一级运算,如果没有括号,在同一级运算中要从左到 右依次运算,不


同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运


算。无论何种运算,都要注意先定符号后运算。



六、有效数字和科学记数法



1


、科学记数法:设


N



0


,则


N=


a

×


10


n


(其中

< br>1



a



10



n


为整数)。



2


、有效数字:一个近似数,从左边第一个不是


0


的数,到精确到的数位


为止,所有的数字 ,叫做这个数的有效数字。精确度的形式有两种:(


1



精确到那一位;(


2


)保留几个有效数字。< /p>



例题:



例< /p>


1


、已知实数


a



b


在数轴上的对应点的位置如图所示,且

a



b




化简:


a



a



b



b



a



----- -


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


- ----


分析:从数轴上


a



b


两点的位置可以看到:


a

< br><


0



b



0



a



b



所以可得:



解:

原式




a



a



b



b



a



a




2


、若


a



(

< p>


)



3


,


小。



3

< br>4


3


b




(


)


3


,


4


3


c



(


)



3


,比较


a



b



c


的大


4

< p>
4



3



分析:


a




(


)


3



1



b






< /p>



1



b



0



c

< p>


0


;所以容易得


3



4



出:



a



b

< p>


c




解:略




3


、若


a



2< /p>



b



2


互为相反数,求


a+b


的值

< br>


分析:由绝对值非负特性,可知


a


2



0


,


3


b



2< /p>



0


,又由题意可知:

< br>a



2



b



2



0



所以只能是:


a


2=0



b+2=0

< p>
,即


a=2



b=



2


,所以


a+b=0


解:略




4


、已知


a



b


互为相反数,


c


d


互为倒数,


m


的绝对值是


1


,求


a



b



cd


< p>
m


2


的值。


< p>
m


解:原式


=


0



1



1



0



1

< br>



1





e





e




1994


e



< /p>



e





0


.


125


1994




2





5< /p>


、计算:(


1



8



2



< /p>


2








< p>



解:(


1

< p>
)原式


=


(


8

< p>


0


.


125

< p>
)


1994


2


2



1


1994



1



------


《 吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----

< br>1


1




1


1




e



e



e



e







e


e


e


e


< br>




=


e



1



1




2


)原式


=





2




2


2



e



2




< br>








第二章:代数式



基础知识点:



一、代数式



1


、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代


数式。单独一个数或 者一个字母也是代数式。



2


、代数式 的值:用数值代替代数里的字母,计算后得到的结果叫做


代数式的值。

< br>


3


、代数式的分类:






单项式


整式






有理式




多项式


代数式







分式



无理式



二、整式 的有关概念及运算



1


、概念




1


)单项式:像


x


7



2


x


y


,这种数与字母的积叫做单项式。单


2


独一个数或字母也是单项式。



单 项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次


数。

< br>


------


《吾爱网络项目》精选教育类应用文档, 如需本文,请下载


-----


单项式的系数:单项式中的数字因数叫单项式的系数。




2


)多项式:几个单项式的和叫做多项式。



多项式的项:多项式中每一个单项式都叫多项式的项。一个多 项式含


有几项,就叫几项式。



多项式 的次数:多项式里,次数最高的项的次数,就是这个多项式的


次数。不含字母的项叫常数 项。



升(降)幂排列:把一个多项式按某一个字母的指数从小 (大)到大


(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。




3


)同类项:所含 字母相同,并且相同字母的指数也分别相同的项


叫做同类项。



2


、运算




1


)整式的加减:


< br>合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母


的指数不变。




去括号法则:括号前面是“


+


”号,把括号和它前面的“


+


”号去掉,


括号里各项都不变;括号前面是“–”号,把括号和它前面 的“–”号去


掉,括号里的各项都变号。




添括号法则:括号前面是“


+


”号,括到括号里的各项都不变;括号前


面是“–”号,括到括 号里的各项都变号。




整式的 加减实际上就是合并同类项,在运算时,如果遇到括号,先去


括号,再合并同类项。





2< /p>


)整式的乘除:




幂的运算法则:其中


m



n


都是正整数



------

< p>
《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



同底数幂相乘:


a

< p>
m



a


n



a


m


n


;同底数幂相除:


a


m



a


n



a


m



n

< br>;


幂的乘方:


(


a


)



a


m

< br>n


mn


积的乘方:


(

< p>
ab


)



a


b




n


n


n



单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,

< br>用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字


母,则连 同它的指数作为积的一个因式。



单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的


积相加。




多项式乘以多项式:先用一个多项 式的每一项乘以另一个多项式的每


一项,再把所得的积相加。




单项除单项式:把系数,同底数幂分别相除,作为商的 因式,对于只


在被除式里含有字母,则连同它的指数作为商的一个因式。




多项式除以单项式:把这个多项式的每一项 除以这个单项,再把所得


的商相加。




乘法公式:




平方差公式:


(


a



b


)(


a


< p>
b


)



a



b



完全平方公式:


(


a


< p>
b


)



a



2


ab


< br>b



2


2


2


2


2


(


a



b


)


2



a


2



2


ab



b

< p>
2



三、因式分解



1


、因式分解概念:把一个多项式化成几个整式的积的 形式,叫因式分


解。



2


、常用的因式分解方法:





1


)提取公因式法:


ma



mb



mc



m


(

< br>a



b



c


)




2


)运用公式法:


< p>
------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载< /p>


-----


平方差公式:


a

< p>


b



(


a



b


)(

< br>a



b


)


;完全平方公式:


2


2


a

< p>
2



2


ab



b


2


< br>(


a



b


)


2




3


)十字相乘法:


x


< br>(


a



b


)


x



ab



(


x



a< /p>


)(


x



b


)



2



4


)分组分解法:将多项式的项适当分组后能提公因式或运用公式


分解。




5


)运用求根公式法:若


ax



bx



c


< br>0


(


a



0


)


的两个根是


x

< br>1



2


x


2


,则有:



ax

< br>2



bx


c



a


(


x



x


1


)(


x



x


2


)



3


、因式分解的一般步骤:




1


)如果多项式的各项有公因式,那么先提公 因式;




2


)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘


法;



3


)对二次三项式,应先尝试 用十字相乘法分解,不行的再用求根


公式法。




4


)最后考虑用分组分解法。



四、分式



1


、分式定义:形如


有字母。





1


)分式无意义:


B=0


时,分式无意义;


B



0


时,分式有意义。





2


)分式的值为


0



A =0



B



0


时,分式的值等于


0






3


)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的


约分。方法 是把分子、分母因式分解,再约去公因式。



A


的式子叫分式,其中


A



B< /p>


是整式,且


B


中含


B


------


《吾爱网络项目》精选教育类应用文档,如需 本文,请下载


-----




4


)最简分式:一个分式的分子与分母没有公因式时,叫做最简 分式。


分式运算的最终结果若是分式,一定要化为最简分式。





5


)通分:把几个异分母的分式分别化成与原来分式相等的同分母分


式的过程,叫做分式的 通分。




< br>6


)最简公分母:各分式的分母所有因式的最高次幂的积。





7

)有理式:整式和分式统称有理式。



2


、分式的基本性质:





1



A


A



M



(


M



< br>0


的整式


)


;(


2



B


B


M


A


A



M



(


M< /p>




0


的整式< /p>


)



B


B



M




3


)分式的变号法则:分式的分子,分母与分式本身的符号,改变其


中任何两个,分式的值不变。



3


、分式的运算:





1


)加、减:同分母的分式相加减,分母不变 ,分子相加减;异分母


的分式相加减,先把它们通分成同分母的分式再相加减。





2


)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,


分 母乘以分母。




< p>
3


)除:除以一个分式等于乘上它的倒数式。





4


)乘方:分式的乘方就是把分子、分母分别乘方。



五、二次根式



1

< p>
、二次根式的概念:式子


a


(

a



0


)


叫做二次根式。





1


)最简二次根式:被开方数的因数是整数,因式是整式,被开方数


中不含能开得尽方的因式的二次根式叫最简二次根式。


< p>
------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载< /p>


-----




2


)同类二次根式:化为最简二次根式之后,被开方数相同的二次根

< p>
式,叫做同类二次根式。





3


)分母有理化:把分母中的根号化去叫做分母有 理化。




< br>4


)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积


不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化


因式 有:


a



a



a


b



c


d



a


b



c


d




2


、二次根式的性质:



2




1




(


a


)



a


(


a



0


)


;(


2



a


2


a





a




a


(< /p>


a



0


)


(


a



0

< p>
)


;(


3



ab



a



b



a


0



b



0


);(


4



3


、运算:



a


a



(


a



0


,


b



0


)



b


b




1


)二次根式的加减:将各二次根式化为最简二次根式后,合 并同类


二次根式。





2


)二次根式的乘法:


a



b





3


)二次根式的除法:


ab



a



0



b


0


)。



a


b



a


(


a



0


,


b



0


)



b



二次根式运算的最终结果如果是根式,要化成最简二次根式。



例题:



一、因式分解:



1


、提公因式法:




1



24


a

< br>(


x



y


)



6


b


(


y



x


)



2


2


分析:先提 公因式,后用平方差公式



解:略


< /p>


------


《吾爱网络项目》精选教育类应用文档,如需本文, 请下载


-----



[


规律总结


]


因式分解本着先提取,后公式等,但应把 第一个因式都分


解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,


如果还能分解,应继续分解。



2


、十字相乘法:


< br>例


2


、(


1


x


4



5


x


2



36


;(


2



(< /p>


x



y


)



4


(


x

< p>


y


)



12



2


分析:可看成是


x


2



(x+y)


的二次三项式,先用十字相乘法,初步分


解。

< br>


解:略



< br>[


规律总结


]


应用十字相乘法时 ,注意某一项可是单项的一字母,也可


是某个多项式或整式,有时还需要连续用十字相乘 法。



3


、分组分解法:


< br>例


3



x


3



2


x


2



x



2



分析:先分组,第一项和第二项一组,第三、第四项一组,后提取 ,


再公式。



解:略



[


规 律总结


]


对多项式适当分组转化成基本方法因式分组,分组的目 的


是为了用提公因式,十字相乘法或公式法解题。



4


、求根公式法:


< br>2



4



x



5


x



5



解:略



二、式的运算



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


巧用公式



< br>例


5


、计算:


(


1



1


2

1


2


)



(


1



)


< /p>


a



b


a



b


分析:运用平方差公式因式分解,使分式 运算简单化。



解:略



[


规律总结


]


抓住三个乘法 公式的特征,灵活运用,特别要掌握公式的


几种变形,公式的逆用,掌握运用公式的技巧 ,使运算简便准确。



2


、化简求值:



6


、先化简,再求值:


5


x



(


3

< p>
x



5


x


)



(


4

y



7


xy


)


,其中


2


2


2


2


x=



1 y =


1



2



解:略



[


规 律总结


]


一定要先化到最简再代入求值,注意去括号的法则。< /p>



3


、分式的计算:


< br>例


7


、化简


a

< br>


5


16


(



a



3


)



2


a< /p>



6


a



3


a


2


< p>
9


分析:–



a



3


可看成




a



3


解:略



[


规律总结


]


分式计算过程中:(


1

)除法转化为乘法时,要倒转分子、


分母;(


2

< p>
)注意负号



4


、根式计算




8


、已知最简二次根式


2


b



1



7



b


是同类二次根式,求


b


的值。



分 析:根据同类二次根式定义可得:


2b+1=7



b




------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


解:略



[


规 律总结


]


二次根式的性质和运算是中考内容,特别是二次根式的 化


简、求值及性质的运用是中考的主要考查内容。






第三章:方程和方程组



基础知识点:



一、方程有关概念



1


、方程:含有未知数的等式叫做方程。



2


、方程的解:使方程左右两边的值相等的未知数的值 叫方程的解,含


有一个未知数的方程的解也叫做方程的根。



3


、解方程:求方程的解或方判断方程无解的过程叫做解方程。



4


、方程的增根:在方程变形时,产生的不适合原方程 的根叫做原方程


的增根。




二、一元方程



1


、一元一次方程





1


)一元一次方程的标准形式:


ax+b=0


(其中


x


是未 知数,


a



b



已知数,


a



0





2


)一玩一次方程的最简形式:


ax=b


(其中


x


是未知数,


a



b


是已

< p>
知数,


a



0

< p>





3


)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类


项和系数化为


1




------


《吾爱网络项目》精选教育类应用文档,如需本文 ,请下载


-----




4


)一元一次方程有唯一的一个解。



2


、一元二次方程





1


)一元二次方程的一般形式:


ax


2



bx



c


< /p>


0


(其中


x


是未 知数,


a



b



c


是已知数,


a


0






2


)一元二次方程的解法:



直接开平方法、配方法、公式法、因式


分解法





3


)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,

< br>一般不用配方法。





4


)一元二次方程的根的判别式:


< /p>



b


2



4


ac




当Δ>


0




方程有两个不相等的实数根;




当Δ


=0




方程有两个相等的实数根;




当Δ


< 0




方程没有实数根,无解;




当Δ≥


0




方程有两个实数根





5


)一元二次方程根与系数的关系:





x


1


,


x


2

< p>
是一元二次方程


ax


2



bx



c


< /p>


0


的两个根,那么:


b

< br>c


x


1



x


2





x


1



x


2




a


a




6


)以两个数


x

1


,


x


2


为根的一元二次方程(二次项系数为


1


)是:

< br>x


2



(


x


1



x


2


)


x



x


1


x


2



0




三、分式方程





1


)定义:分母中含有未知数的方程叫做分式方程 。





2


)分式方程的解法:




一般解法:去分母法,方程两边都乘以最简公分母。



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



特殊方法:换元法。





3


)检验方法:一般把求得的未知数的值代 入最简公分母,使最简公


分母不为


0


的 就是原方程的根;使得最简公分母为


0


的就是原方程的增


根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。




四、方程组



1


、方程组的解:方程组中各方程的公共解叫做方程组的解。



2


、解方程组:求方程组的解或判断方程组无解的过程 叫做解方程组



3


、一次方程组:





1


)二元一次方程组:




a


1


x



b


1


y



c


1


< /p>


一般形式:




a


1


,


a


2< /p>


,


b


1


,


b


2


,


c

< p>
1


,


c


2


不全为


0




a


x



b

y



c


2


2



2



解法:代入消远法和加减消元法




解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。





2

)三元一次方程组:




解法:代入消元法和加减消元法



4


、二元二次方程组:





1


)定义:由一个二元一次方程和一个二 元二次方程组成的方程组以


及由两个二元二次方程组成的方程组叫做二元二次方程组。< /p>





2


)解法:消元,转化为解一元二次方程,或者降次,转化为二元一


次方程组。



考点与命题趋向分析



例题:



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



一、一元二次方程的解法





1


、解下列方程:





1



1


(


x



3


)

< br>2



2


;(

2



2


x


2



3


x


< /p>


1


;(


3



2


4


(


x



3


)


2



25


(


x



2


)


2


分析:(


1


)用直接开方法解; (


2


)用公式法;(


3


)用因式分解法



解:略


< /p>


[


规律总结


]


如 果一元二次方程形如


(


x


< p>
m


)



n


(


n



0

)


,就可以用直接开


2


方法来解; 利用公式法可以解任何一个有解的一元二次方程,运用公式法


解一元二次方程时,一定要 把方程化成一般形式。




2


、解下列方程:




1



x



a


(


3


x



2


a



b


)



0


(

< br>x


为未知数


)


;(


2



x


2

< br>


2


ax


8


a


2



0



2


分析:(


1


)先化为一般形式,再用公式法解;(


2

< br>)直接可以十字相乘


法因式分解后可求解。



解:略



[


规 律总结


]


对于带字母系数的方程解法和一般的方程没有什么区别 ,在用


公式法时要注意判断△的正负。



二、分式方程的解法:



< p>
3


、解下列方程:



x< /p>


2



2


6


x


2


1


< p>


5




2



;(


2

< br>)




1


x


x


2



2


1



x


2


x



1


分析:(< /p>


1


)用去分母的方法;(


2


)用换元法



解:略



------


《吾爱网络项目》精选教育类应用文档,如需本文,请 下载


-----


[


规律总结


]


一般的分式方程用去分母法来解,一些具有特殊关系如:有平


方关系,倒数关系等的分式方程,可采用换元法来解。



三、根的判别式及根与系数的关系




4


、已知关于


x


的方程:


(


p


1


)


x



2


px



p



3



0


有两个 相等的实


2


数根,求


p


的值。



分析:由题意可得



=0


,把各系数代入



=0


中就可求出


p


,但要先化 为


一般形式。



解:略



[


规 律总结


]


对于根的判别式的三种情况要很熟练,还有要特别留意 二次项


系数不能为


0



5


、已知


a



b


是方程


x



2


x



1

< br>


0


的两个根,求下列各式的值:



2



1



a


2



b


2


;(


2



1


1



< p>
a


b


分析:先算出


a+b



ab


的值,再代入把(


1


)(


2


)变形后的式子就 可


求出解。



[


规律总结


]


此类题目都是先算出两根之和和两根之积,再把要 求的式子变


形成含有两根之和和两根之积的形式,再代入计算。但要注意检验一下方


程是否有解。




6


、求作一个一元二次方程,使它的两个根分别比方程


x


2



x


< p>
5



0


的两个根小


3


分析:先出求原方程的两根之和


x


1



x


2

< p>
和两根之积


x


1


x


2


再代入求出


(


x< /p>


1



3


)



(


x


2

< p>


2


)



(


x


1


3


)(


x


2



3


)


的值,所求的方程也就容易写 出来。



解:略


[


规律总结


]


此类题目可以先解出 第一方程的两个解,但有时这样又太复杂,


用根与系数的关系就比较简单。



------


《吾爱网络项目》精选教育类应用文 档,如需本文,请下载


-----


三、方程组




7


、解下列方程组:



< p>
x



y



2


z



1


2


x



3


y



3


< /p>



1








2




2< /p>


x



y



z



5


< p>


x



2


y



5


x



y



3


z



4


< /p>


分析:(


1


)用加减消元法消

< p>
x


较简单;(


2


)应该先 用加减消元法消去


y



变成二元一次方 程组,较易求解。



解:略



[


规律总结


]


加减消元 法是最常用的消元方法,消元时那个未知数的系数最


简单就先消那个未知数。

< p>



8


、解下列方程组:



2


2




x



y



7



3


x



xy



4


y



3

x



4


y



0



1


)< /p>







2





2


2




xy



12



x



y



25


分析:(


1


)可用代入消远法,也可用根与系数的关系来求解;(


2


)要


先把第一个方程因式分解化成两个二元一次方程,再与第二个方程分别组< /p>


成两个方程组来解。



解:略



[


规 律总结


]


对于一个二元一次方程和一个二元二次方程组成的方程 组一般


用代入消元法,对于两个二元二次方程组成的方程组,一定要先把其中一


个方程因式分解化为两个一次方程再和第二个方程组成两个方程组来求解。






第四章:列方程(组)解应用题



-- ----


《吾爱网络项目》精选教育类应用文档,如需本文,请下载

-----



知识点:



一、列方程(组)解应用题的一般步骤



1


、审题:



2


、设未知数;



3


、找出相等关系,列方程(组);



4


、解方程(组);



5


、检验,作答;




二、列方程(组)解应用题常见类型题及其等量关系;



1


、工程问题





1


)基本工作量的关系:工作量


=


工作效率×工作时间

< p>




2


)常见的等量关系:甲的工作量


+


乙的工作量< /p>


=


甲、乙合作的工作


总量





3


)注意:工程问题常把总工程看作“


1


”,水池注水 问题属于工程


问题



2


、行程问题





1


)基本量之间的关系:路程

=


速度×时间





2


)常见等量关系:




相遇问题:甲走的路程


+


乙走的路程


=


全路程




追及问题(设甲速度快):




同时不同地:甲的时间


=


乙的时间;甲 走的路程–乙走的路程


=


原来甲、


乙相 距路程



------


《吾爱网络项目 》精选教育类应用文档,如需本文,请下载


-----



同地不同时:甲的时间


=


乙的时间–时 间差;甲的路程


=


乙的路程



3


、水中航行问题:



顺流速度


=


船在静水中的速度


+


水流速度;



逆流速度


=


船在静水中的速度–水流速度



4


、增长率问题:


< br>常见等量关系:增长后的量


=


原来的量

< br>+


增长的量;增长的量


=


原来< /p>


的量×(


1+


增长率);



5


、数字问题:



基本量之间的关系:三位数


=


个位上的数


+


十位上的数×


10+


百位上


的数×


100


三、列方程解应用题的常用方法



1< /p>


、译式法:就是将题目中的关键性语言或数量及各数量间的关系译


成代数式,然后根据代数之间的内在联系找出等量关系。



2< /p>


、线示法:就是用同一直线上的线段表示应用题中的数量关系,然


后根据线段长度的内在联系,找出等量关系。



3


、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各


种量之间的 关系。



4


、图示法:就是利用图表示 题中的数量关系,它可以使量与量之间


的关系更为直观,这种方法能帮助我们更好地理解 题意。



例题:





1


、甲、乙两组工人合作完成一项工程,合作


5


天后,甲组另


有任务,由乙组再单独工作


1


天就可完成, 若单独完成这项工程乙组比


甲组多用


2


天,求甲、乙两组单独完成这项工程各需几天?



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-- ---


分析:设工作总量为


1


,设甲 组单独完成工程需要


x


天,则乙组完成


工程需要


(x+2)


天,等量关系是甲组


5


天的工作量


+


乙组


6


天的工作量


=


工作总量



解:略




2


、某部队奉命派甲连跑步前往


90


千米外的


A


地,


1< /p>


小时


45



后, 因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快


28

< br>千米,恰好在全程的


时间



分析 :设乙连的速度为


v


千米


/

< p>
小时,追上甲连的时间为


t


小时,则


甲连的速度为(


v



28< /p>


)千米


/


小时,这时乙连行了

< p>
(


t



)


小时,其等量关


系为:甲走的路程


=

< br>乙走的路程


=30


解:略


< /p>



3


、某工厂原计划在规定期限内生产通 讯设备


60


台支援抗洪,由


于改进了操 作技术;每天生产的台数比原计划多


50%


,结果提前


2


天完


成任务,求改进操作技术后每天生产通讯 设备多少台?



分析:设原计划每天生产通讯设备


x


台,则改进操作技术后每天生产


x



1+0.5


)台,等量关系为:原计划所用时间–改 进技术后所用时间


=2




解:略




4


、某商厦今年一月份销售额为


60


万元 ,二月份由于种种原因,


经营不善,销售额下降


10%


,以后经加强管理,又使月销售额上升,到


四月份销售额增加到


96


万元,求三、四月份平均每月增长的百分率是多

少?



分析:设三、四月份平均每月增长率为


x%


,二月份的销售额为


60



1



10%


)万元,三月份的销售额为二月份的(


1+x


)倍,四月份的 销


1


处追上甲连。求乙连的行进速度及追上甲连的


3


7


4


------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


售额又是三月份的(


1+x


)倍,所以 四月份的销售额为二月份的(


1+x



2


倍,等量关系为:四月份销售额为


=96

万元。



解:略




5


、一年期定期储蓄年利率为


2.25%


,所得利息要交纳


20%


的利


息税,例如存入一年期


100


元, 到期储户纳税后所得到利息的计算公式


为:


< br>税后利息


=


100


< p>
2


.


25


%



100



2


.


25


%



20


%



100



2


.


25


%(


1



20


%)



已知某储户存下一笔一年期定期储蓄到期纳税后 得到利息是


450


元,


问该储户存入了 多少本金?




分析:设存入< /p>


x


元本金,则一年期定期储蓄到期纳税后利息为

< br>2.25%(1-20%)x


元,方程容易得出。





6


、某商场销售一批名牌衬衫,平均每天售出


20


件,每件盈利< /p>


40


元,为了扩大销售,增加盈利,减少库存,商场决定采取适当 的降低成本


措施,经调查发现,如果每件衬衫每降价


1


元,商场平均每天可多售出


2


件。若商场平均每 天要盈利


1200


元,每件衬衫应降价多少元?




分析:设每件衬衫应该降价


x


元,则每件衬衫的利润为(


40-x


)元,


平均每天的销售量为(


20+2x


)件,由关系式:



总利润


=


每件的利润×售出商品的叫量,可列出方程




解:略






第五章:不等式及不等式组



---- --


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


知识点:



一、不等式与不等式的性质



1


、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,

< br><,>)。



2


、不等式的性质:





l


)不等式的两边都加上(或减去)同一个 数,不等号方向不改变,



a



b



c


为实数< /p>



a



c



b



c



2


)不等式两边都乘以(或除以)同一个正数 ,不等号方向不变,



a


< p>
b



c



0



ac



bc




< br>3


)不等式两边都乘以(或除以)同一个负数,不等号方向改变,



a



b


c



0



ac



bc.



注:在不等式的两边都乘以(或除以)一个实数时,一 定要养成好的


习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否< /p>


改变,不能像应用等式的性质那样随便,以防出错。



3


、任意两个实数


a



b


的大小关系(三种):



1



a



b



0



a



b




2



a



b=0



a=b


< p>


3



a



b



0


a



b


4


、(


1


a



b



0



a


< /p>


b





2



a



b



0



a


2



b


2




二、不等式(组)的解、解集、解不等式



1


、能使一个不等式(组)成立的未知数的一个值叫做 这个不等式(组)


的一个解。



--- ---


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



不等式的所有解的集合,叫做这个不等式的解集。




不等式组中各个不等式的解集的公共部分叫做不等式组的解集。



2


.求不等式(组)的解集的过程叫做解不等式(组)。




三、不等式(组)的类型及解法



1


、一元一次不等式:





l


)概念:含有一个未知数并且含未知数 的项的次数是一次的不等式,


叫做一元一次不等式。





2


)解法:与解一元一次方程类似,但要特别注意当不等式的两边同


乘以(或除以)一个负 数时,不等号方向要改变。



2


、一元一次不等式组:



< /p>



l


)概念:含有相同未知数的几个一元 一次不等式所组成的不等式组,


叫做一元一次不等式组。





2


)解法:先求出各不等式的解集,再确定解集的公共部分。




注:求不等式组的解集一般借助数轴求解较方便。



例题:



方法


1


:利用不等式的基本性质



1


、判断正误:



< p>


1


)若


a



b



c

< br>为实数,则


ac


2


< p>
bc


2






2


)若


ac


2



bc


2


,则


a



b



分析:在(

< p>
l


)中,若


c=0


,则< /p>


ac


2


=


bc< /p>


2




在(


2


)中,因为”>”,


所以。


C



0


,否则应有


ac


2


=


bc


2




a



b



解:略


< br>------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



[规律总结]将不等式正 确变形的关键是牢记不等式的三条基本性质,


不等式的两边都乘以或除以含有字母的式子 时,要对字母进行讨论。




方法


2


:特殊值法





2


、若


a



b



0


,那么下列各式成立的是(





A

< br>、


a


1


1


a



B



ab



0 C




1


D




1


< /p>


b


a


b


b



分析:使用直接解法解答常常费时间,又因为答案在一般情况 下成立,


当然特殊情况也成立,因此采用特殊值法。




解:根据


a

< br><


b



0


的条件,可取


a=



2



b=



l


,代入检验,易知


a



1


,所以选


D


b


[


规律总结 ]此种方法常用于解选择题,学生知识有限,不能直接解答


时使用特殊值法,既快,又能 找到符合条件的答案。




方法


3


:类比法





3


、解下列一元一次不等式,并把解集在数轴上表示出来。





1



8



2



x



2


)<


4x



2


;(


2

< p>


1



x



1


x


1




2



2


3



分析:解一元一次不等式的步骤与解一元一次方程类似,主要步骤有


去分母,去括号、 移项、合并同类项,把系数化成


1


,需要注意的是,不


等式的两边同时乘以或除以同一个负数,不等号要改变方向。




解:略



[


规律总结]解一元一次不等式与解一元一次方程的步 骤类似,但要注


意当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变,


类比法解题,使学生容易理解新知识和掌握新知识。




方法


4


:数形结合法



------


《吾爱 网络项目》精选教育类应用文档,如需本文,请下载


-----



2


(


x



8


)



10< /p>



4


(


x



3


)


< p>



4


、求不等式 组:



x



1


6


x



7


的非负整数解





1



3


< /p>


2



分析:要求一个不等式组的非 负整数解,就应先求出不等式组的解集,


再从解集中找出其中的非负整数解。

< p>



解:略




方法


5


:逆向思考法





5


、已知关于


x


的不等 式


(


a



2< /p>


)


x



10



a


的解集是


x< /p>



3


,求


a



值。




分析:因为关于


x


的不等式的解集为< /p>


x



3


,与原不 等式的不等号同向,


所以有


a



2 >0


,即原不等式的解集为< /p>


x



程求出


a< /p>


的值。




解:略



[

< br>规律总结


]


此题先解字母不等式,后着眼已知的解集,探 求成立的条件,


此种类型题都采用逆向思考法来解。






第六章:函数及其图像



知识点:



一、平面直角坐标系



1


、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。


在平面直 角坐标系内的点和有序实数对之间建立了—一对应的关系。



1 0



a


10



a




3


解此方


a



2


a



2


----- -


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


- ----


2


、不同位置点的坐标的特征:





1


)各象限内点的坐标有如下特征:





P



x, y


)在第一象限



x



0



y


0






P



x, y


)在第二象限



x

< br><


0



y



0






P



x, y


)在第三象限



x

< br><


0



y



0






P



x, y


)在第四象限



x

< br>>


0



y



0






2


)坐标轴上的点有如下特征:





P



x, y


)在


x


轴上



y



0


,< /p>


x


为任意实数。





P



x



y


)在


y


轴上



x< /p>



0



y


为任意实数。



3

< br>.点


P



x, y


)坐标的几何意义:





1


)点


P



x, y


)到


x


轴的距离是


| y |






2


)点


P



x, y


)到


y


袖的距离是


| x |






3


) 点


P



x, y


)到原点的距离是


x


2


< p>
y


2



4


.关于坐标轴、原点对称的点的坐标的特征:





1


)点


P



a, b

)关于


x


轴的对称点是


P


1


(


a


,



b


)


< br>




2

< br>)点


P



a, b


)关于


x


轴的对称点是


P< /p>


2


(



a


,


b


)


< p>




3


)点


P



a, b


)关于原点的对称点是


P


3


(



a


,


b


)





二、函数的概念



1


、常量和变量:在某一变化过程中可以取不同数值的 量叫做变量;保


持数值不变的量叫做常量。


< br>------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


2


、函数:一般地,设在 某一变化过程中有两个变量


x



y


,如果对于


x


的每一个值,


y


都有唯一的值与它对应,那么就说


x


是自变量,


y



x

< p>
的函数。





1


)自变量取值范围的确是:




①解析式是只含有一个自变量的整式的函数,自变量取 值范围是全体


实数。




②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分


母 不为


0


的实数。




③解析式是只含有一个自变量的偶次根式的函数,自变 量取值范围是


使被开方数非负的实数。




注意:在确定函数中自变量的取值范围时,如果遇到实 际问题,还必


须使实际问题有意义。





2


)函数值:给自变量在取值范围内 的一个值所求得的函数的对应值。



< br>(


3


)函数的表示方法:①解析法;②列表法;③图像法





4


)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;

③连线




三、几种特殊的函数



1


、一次函数



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----




直线位置与


k



b


的关系:





1



k



0

< br>直线向上的方向与


x


轴的正方向所形成的夹角为锐角;< /p>





2< /p>



k



0


直线向上的方向与


x


轴的正方向所形成的夹角 为钝角;




3



b



0


直 线与


y


轴交点在


x

轴的上方;




4



b



0

直线过原点;




5



b



0

< br>直线与


y


轴交点在


x

< p>
轴的下方;



2


、二次函数



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----




抛 物线位置与


a



b


c


的关系:





1



a


决定抛物线的开口方向


< p>


a



0



开口向上



a



0



开口向下

< p>




2

< p>


c


决定抛物线与


y


轴交点的位置:



c>0



图像与


y


轴交点在< /p>


x


轴上方;


c=0



图像过原点;


c<0


< p>


像与


y


轴交点在


x


轴下方;





3



a



b


决定抛物线对称轴的位置:

< p>
a



b


同号,对称轴在< /p>


y


轴左侧;


b



0


,对称轴是


y


轴;


a



b


异号。对称轴在


y


轴右侧;



3


、反比例函数:


< br>------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



4


、正比例函数与反比例函数的对照表:



例题:




1


、正比例函数图象与反比例函数图象都经过点


P



m



4


),已知点


P



x


轴的距离是到


y


轴的 距离


2



.



⑴求点


P


的坐标


.





⑵求正比例函数、反比例函数的解析式。




分析:由点


P



x


轴的距离是到


y


轴的距离


2


倍可知:


2 |m|=4


,易求


出点


P


的坐标,再利用待定系数法可求出这正、反比例函数的解析式。




解:略


------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载

< p>
-----




2


、已知


a



b


是常数,且


y+b



x+a


成正比例


.


求证:


y



x


的一


次函数


.


分析:应写出

y+b



x+a


成正比例的表达式 ,然后判断所得结果是


否符合一次函数定义


.


证明:由已知,有


y+b=k(x+a)


,其中


k



0.


整理,得


y=kx+(ka



b).






因为


k



0



ka



b


是常数,故


y=kx+(ka



b)



x


的一次函数式


.




3


、填空:如果直线方程


ax+by+c=0


中,


a



0



b



0



bc



0



则此直线经过第


________


象限


.


a


c


x



.


因为


a

< p>


0



b



0


,所以


b


b


a


a


c

c



0


,




0


,又


b c



0


,即



0


,故-



0 .


相当于在一次函数


b


b


b


b


a


c

< br>c


y=kx+l


中,


k=




0


< p>
l=




0


,此直线与


y


轴的交点


(0


,-


)



b< /p>


b


b


分析:先把


ax+by+c=0


化为



x


轴上方


.


且此直线的向上方向与


x


轴正方向所成角是钝角,所以此直线过


第一、二、四 象限


.



< br>4


、把反比例函数


y=


里,正确 的是


( ).


答:选


(D).< /p>


这两个函数式中的


k


的正、负号应相同< /p>


(



13



110).


k


与二次函数


y=kx


2


(k


< p>
0)


画在同一个坐标系


x


------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----





5


、画出二次函数


y=x


2


-6x+7


的图象,根据图象回答下列问题:




1


)当


x=-1



1



3



y


的值是多少?




2


)当


y=2


时,对应的


x


值 是多少?




3


)当


x



3


时,随


x


值的增大


y

< br>的值怎样变化?




4


)当


x


的值由


3


增加


1


时,对应的


y


值增加多少?



分析:要画出这个二次 函数的图象,首先用配方法把


y=x


2


-6x+7



形为


y=



x-3



2


-2


,确定抛物线的开口方向、对称轴、顶点坐标,然后


列表、描点、画图.



解:图象略.





6


、拖拉 机开始工作时,油箱有油


45


升,如果每小时耗油


6


升.




1


)求油箱中的余油量


Q


(升 )与工作时间


t


(时)之间的函数关


系 式;




2


) 画出函数的图象.



答:(


1



Q=45-6t




------


《吾爱网络项目》精选教育类应用文档,如需本文 ,请下载


-----



2

< p>
)图象略.注意:这是实际问题,图象只能由自变量


t

的取值范



0


< br>t



7.5


决定是一条线段,而 不是直线.






第七章:统计初步



知识点:



一、总体和样本:




在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对


象叫 做个体。从总体中抽取的一部分个体叫做总体的一个样本,样本中个


体的数目叫做样本容 量。




二、反映数据集中趋势的特征数



1


、平均数





1



x

1


,


x


2


,


x


3


,


< /p>


,


x


n


的平均数 ,


x



1


(< /p>


x


1



x


2




< p>
x


n


)



n




2


)加权平均数:如果


n


个数据中,< /p>


x


1


出现


f


1


次,


x


2


出现


f


2


次,……,


x


k


出现


f< /p>


k


次(这里


f


1



f


2





f


k



n


),则


x



1


(


x


1


f


1


< br>x


2


f


2





x


k


f


k


)



n




3


)平均数的简化计算:



< /p>


当一组数据


x


1


,


x


2


,


x< /p>


3


,



,


x


n


中各数据的数值较大,并且都与常数


a



近时,设


x< /p>


1



a


,


x


2



a

< p>
,


x


3



a


,



,

x


n



a


的平均数为


x


'


则:

< br>x



x


'



a




- -----


《吾爱网络项目》精选教育类应用文档,如需本文,请下载

< br>-----


2


、中位数:将一组数据接从小到 大的顺序排列,处在最中间位置上的


数据叫做这组数据的中位数,如果数据的个数为偶数 中位数就是处在中间


位置上两个数据的平均数。



3


、众数:在一组数据中,出现次数最多的数据叫做这 组数据的众数。


一组数据的众数可能不止一个。




三、反映数据波动大小的特征数:



1


、方差:





l



x

1


,


x


2


,


x


3


,


< /p>


,


x


n


的方差,



(


x


1



x


)


2



(


x


2



x


)


2

< br>




(


x


n



x


)


2


S




n


2


2


x


1



x


2





x

< br>n


2



x




2


)简化计算公式:


S



n


< p>
x


1


,


x


2


,


x


3

,



,


x


n


为较小的整数时用这个公式要比较方便)



2


2


2




3


)记


x< /p>


1


,


x


2


,


x


3


,

< p>


,


x


n


的方差为


S


2


,设

< p>
a


为常数,


x


1



a


,


x


2



a


,

< br>x


3



a


,



,


x


n



a


的方差为


S


`


2


,则


S


2


=


S


`


2




< /p>


注:当


x


1


,< /p>


x


2


,


x


3


,



,

< p>
x


n


各数据较大而常数


a


较接近时,用该法计算方


差较简便。



2


、标准差:方差(


S


2


)的算术平方根叫做标准差(


S

< p>
)。




注:通常由方差求标准差。




四、频率分布



1


、有关概念





1


)分组:将一组数据按照统一的标准分成若干组 称为分组,当数据



100


个以内时, 通常分成


5



12

组。





2


)频数:每个小组内的数据的个数叫做该组的频数。各个小组的频

< p>
数之和等于数据总数


n




------


《吾爱网络项目》精选教育类应用文档,如需本文 ,请下载


-----




3


)频率:每个小组的频数与数据总数


n< /p>


的比值叫做这一小组的频率,


各小组频率之和为

< br>l






4


)频率分布表:将一组数据的分组及各组相应的频 数、频率所列成


的表格叫做频率分布表。





5


)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的


各分点为横坐标,以频 率除以组距为纵坐标的直方图,叫做频率分布直方


图。




图中每个小长方形的高等于该组的频率除以组距。




每个小长方形的面积等于该组的频率。




所有小长方形的面积之和等于各组频率之和等于


1





样本的频率分布反映样本中各数据的个数分别占样本容量


n


的比例的


大小,总体分布反映总体中各组数据的个数分别在总体中所占比 例的大小,


一般是用样本的频率分布去估计总体的频率分布。



2


、研究频率分布的方法;得到一数据的频率分布和方 法,通常是先整


理数据,后画出频率分布直方图,其步骤是:





1


)计算最大值与最小值的差;(


2


)决定组距与组数;(


3


)决定分


点;(


4


)列领率分布表;(


5


)绘频率分布直 方图。



例题:





1


、某养鱼户搞池塘养鱼,放养鳝鱼苗


20000


尾,其成活率为


70


%,


随意捞出

10


尾鱼,称得每尾的重量如下(单位:千克)


0



8



0



9



1

< br>.


2



1



3



0



8



1



l



1



0



1



2



0


< br>8



0



9



根据样本平均数估计这塘鱼的总产量是多少千克?




分析:先算出样本的平均数,以样本平均数乘以


20000


,再乘以


70%

< br>。



解:略


< br>------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



[规律总结]求平均数有 三种方法,即当所给数据比较分散时,一般


用平均数的概念来求;著所给数据较大且都在 某一数


a


上下波动时,通


常采用简化公 式;若所给教据重复出现时,通常采用加权平均数公式来计


算。





2


、一次科技知识竞赛,两次学生成绩统计如下





已经算得两个组的人均分都是


80


分,请根据你所学过的统计知识进一


步判断这两个组成绩谁 优谁次,并说明理由




解:(


l


)甲组成绩的众数


90


分,乙组成绩的众数为


70


分,从众数比

< p>
较看,甲组成绩好些。



< p>


2


)算得


S

< p>


=172



S




256




所以甲组成绩较乙组波动要小。





3


)甲、乙两组成绩的中位数都是< /p>


80


分,甲组成绩在中位数以上的



33


人,乙组成绩在中位数以上的有


26< /p>


人,从这一角度看甲组的成绩


总体要好。





4


)从成绩统计表看,甲组成绩高于


80


分的人数为


20


人,乙组成


绩高于


80


分的人数为


24


人,所以,乙组成绩集 中在高分段的人数多,


同时,乙组得满分的人数比甲组得满分的人数多

< br>6


人,从这一角度看,


乙组的成绩较好。



[


规律总结]明确方差或标准差是衡量一组 数据的波动的大小的,恰当


选用方差的三个计算公式,应抓住三个公式的特征,根据题中 数据的特点


选用计算公式。



2


2


------


《吾爱网络项目》精选教育类 应用文档,如需本文,请下载


-----


< p>


3


、到从某学校


360 0


人中抽出


50


名男生,取得他们的身 高(单位


cm


),数据如下:


181 181 179 177 177 177 176 175 175 175


175 174 174 174 174 173 173 173 173 172 172 172 172 172


171 171 171 170 170 169 l69 168 167 167 167 166 l66


l66 166 166 165 165 165 163 163 162 161 160 158 157


1


、计算频率,并画出频率分布直方图



2


、上指出身高在哪一组内的男学生人数所占的比最大



3


.请估计这些初三男学生身高在

166



5cm


以下的约有多少人 ?




解:


1


、各组频率依次是:


0.08



0.22



0.22



0.36



0.12




2


、从频率分布表(或图)中,可见身高在


171.5


176.5


组内男学生


人数所占 的比最大。



------


《吾爱网络 项目》精选教育类应用文档,如需本文,请下载


-----


3


、这个地方男学生身高


166.5


侧 以下的约为


3000



(


0


.


08



0


.


22


)

< br>


900


(人)



[


规律总结]要掌握获得一组数据的频率分布的五大步 骤,掌握整理数


据的步骤和方法。会对数据进行合理的分组。





几何部分



第一章:线段、角、相交线、平行线



知识点:



< br>一、直线:直线是几何中不加定义的基本概念,直线的两大特征是


“直”和“向两 方无限延伸”。




二、直线的 性质:经过两点有一条直线,并且只有一条直线,直线的


这条性质是以公理的形式给出的 ,可简述为:过两点有且只有一条直线,


两直线相交,只有一个交点。

< br>



三、射线:



1


、射线的定义:直线上一点和它们的一旁的部分叫做射线。



2


.射线的特征:“向一方无限延伸,它有一个端点。”




四、线段:



1


、线段的定义:直线上两点和它之间的部分叫做线段 ,这两点叫做线


段的端点。



2


、线段的性质(公理):所有连接两点的线中,线段最短。




五、线段的中点:



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下 载


-----


1


、定义如图


1



1


中,点


B


把线段


AC


分成两条相等的线段,点


B


叫做线段图


1



1AC


的中点。

< br>


2


、表示法:




AB



BC


∴点


B



AC


的中点




或∵


AB




1


MAC


2



∴点


B



A C


的中点,或∵


AC



2AB


,∴点


B


< p>
AC


的中点




反之也成立



∵点


B



A C


的中点,∴


AB


< br>BC



或∵点


B



AC


的中点,




AB=


1


AC


2



或∵点


B



A C


的中点,




AC=2BC


六、角



1

< br>、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。


要弄清定义 中的两个重点①角是由两条射线组成的图形;②这两条射线必


须有一个公共端点。另一种 是一条射线绕着端点从一个位置旋转


到另一个位置所形成的图形。可以看出在起始位置的 射线与终止


位置的射线就形成了一个角。



2


.角的平分线定义:一条射线把一个角分成两个相等的角,



这条射线叫做这个角的平分线。表示法有三种:如图


1



2




1


)∠


AOC


=∠


BOC



2


)∠


AOB



2

< p>


AOC



2



COB


------

< p>
《吾爱网络项目》精选教育类应用文档,如需本文,请下载


----- < /p>



3


)∠


AOC


=∠


COB=


1



AOB


2


< p>
七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆


周分成


360


等份,每一份叫做一度的角。


1



=60


分;


1



=60


秒。




八、角的分类:





1


)锐角:小于直角的角叫做锐角




2


)直角:平角的一半叫做直角





3


)钝角:大于直角而小于平角的角



< br>(


4


)平角:把一条射线,绕着它的端点顺着一个方向旋 转,当终止位


置和起始位置成一直线时,所成的角叫做平角。





5


)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和


始边重合时,所成的角 叫做周角。





6


)周角、平角、直角的关系是:


l


周角


=2


平角


=4


直角


=360


°




九、相关的角:



1


、对顶角:一个角的两边分别是另一个角的两边的反 向延长线,这两


个角叫做对顶角。



2


、互为补角:如果两个角的和是一个平角,这两个角做互为补角。


3


、互为余角:如果两个角的和是一个直角,这 两个角叫做互为余角。



4


、 邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两


个角做互为邻补角。< /p>




注意:互余、互补是指两个角 的数量关系,与两个角的位置无关,而


互为邻补角则要求两个角有特殊的位置关系。




十、角的性质



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


1


、对顶角相等。



2


、同角或等角的余角相等。



3


、同角或等角的补角相等。




十一、相交线



1


、斜线:两条直线相交不成直角时,其中一条直线叫 做另一条直线的


斜线。它们的交点叫做斜足。



2


、两条直线互相垂直:当两条直线相交所成的四个角 中,有一个角是


直角时,就说这两条直线互相垂直。



3


、垂线:当两条直线互相垂直时,其中的一条直线叫 做另一条直线的


垂线,它们的交点叫做垂足。



4


、垂线的性质





l


)过一点有且只有一条直线与己知直线垂直。





2


)直线外一点与直线上各点连结的所有线 段中,垂线段最短。简单


说:垂线段最短。




十二、距离



1


、两点的距离:连结两点的线段的长度叫做两点的距离。



2


、从直线外一点到这条直线的垂线段的长度叫做点到 直线的距离。



3


、两条平行 线的距离:两条直线平行,从一条直线上的任意一点向另


一条直线引垂线,垂线段的长度 ,叫做两条平行线的距离。




说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距


离,它们与点到直线 的垂线段是分不开的。




十三、平行线



1


、定义:在同一平面内,不相交的两条直线叫做平行线。


< /p>


------


《吾爱网络项目》精选教育类应用文档,如需本文, 请下载


-----


2


、平行 公理:经过直线外一点,有且只有一条直线与这条直线平行。



3


、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条

< br>直线也互相平行。




说 明:也可以说两条射线或两条线段平行,这实际上是指它们所在的


直线平行。

< p>


4


、平行线的判定:





1


)同位角相等,两直线平行。

< p>




2


)内错角相等,两直线平行。





3


)同旁内角互补,两直线平行。



5


、平行线的性质





1


)两直线平行,同位角相等。




2


)两直线平行,内错 角相等。





3


)两直线平行,同旁内角互补。




说明:要证明两条直线平行,用判定公理(或定理)在 已知条件中有


两条直线平行时,则应用性质定理。



6


、如果一个角的两边分别平行于另一个角的两边,那 么这两个角相等


或互补。



< /p>


注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当


角的两边平行且一边方向相同另一方向相反时,这两个角互补。



例题:



方法


1


:利用特殊“点”和线段的长





1


、已知:如图

1



3



C


是线段


AB


的中点,


D


是线段


CB


的中点,


BD



1.2cm


。求:


AD


的长。


< br>------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----


[


思路分析


]



D


< br>CB


中点,


DB


已知可求出


CB


,再由


C


点< /p>




AB


中点可 求出


AB


长,用


AB

< br>减减去


DB


可求


AD

< p>




解:略



[


规 律总结


]


利用线段的特殊点如“中点”“比例点”求线段的长的 方


法是较为简便的解法。




方法


2


:如何辨别角的个数与线段条数 。





2


、如图


1



4


在线段


AE


上共有


5


个点


A


< br>B



C



D



E


怎样才数出所有线段,



[


思路分析


]


本问题如不认真审题会误以为有


4


点恰有


4


个空就是


4

< br>条


线段即


AB



BC



CD



ED


;而如果从一个端点出发 、再找出另一个端


点确定线段,就会发现有


10


条线段:




即:


AB



AC



AD



AE



BC



BD



BE



CD



CE



DE



10


条。



[


规律总结


]


此类型题如果做到不重不 漏,最好方法是先从一个端点出


发,




再找出另一个端点确定线段。





3


、如图


1



5


指出图形中直



线


AB

上方角的个数(不含平角)



[

< br>思路分析


]


此题有些同学不认真分析误认为就

< p>
4


个角,其实共有


9


个< /p>


角。即:∠


AOC


、∠

< br>AOD


、∠


AOE


、∠


COD


、∠


COE


、∠


COB


、∠


DOE

、∠


DOB


、∠


EOB

< p>


9


个角。



[


规律总结


]


从一个顶点引出多条射线时.为了确定角的个数,一般按


边顺序分类统计,避 免既不重复又不遗漏。




方法


3


:用代数法求角度



------


《吾爱网络项目》精选教育类应用文档,如需本文,请下载


-----



4


、已知一个锐角的余角,是这个锐角的补角的


1


,求这个角。



6


[


思路分析


]


本题涉及到的角是锐角同 它的余角及补角。根据互为余角,


互为补角的概念,考虑它们在数量上有什么关系?设锐 角为


x


,则它的余


角为


90



x


。,它的补角为


180



x


,这就可以列方程了。




解:略



[

< br>规律总结]有关余角、补角的问题,一般都用代数方法先设未知数,


再依题意列出 方程,求出结果。




方法


4


:添加辅助线平移角





5


、 已知:如图


l



6


AB



ED



求证:∠


B


+∠


BCD


+∠


D

< br>=


360


°



[


思路分析


]

< br>我们知道只有周角是等于


360


°,而图中又出现了


与∠


BCD


相关的以


C


为顶点的周角,若能把∠


B


、∠< /p>


D


移到与∠


BCD


相邻且以


C


为顶点的位置,即可把∠


B


、∠


BCD


和∠

D



个角组成一分周角,则可推出结论。

< br>



证时:略



规律总结


]


此题虽是三种证法但思想是一样的, 都是通过加辅助线,


平移角达到目的,这种处理方法在几何中常常用到。




几何部分



第二章:三角形



知识点:




一、关于三角形的一些概念


-


-


-


-


-


-


-


-