多边形的面积知识点归纳

余年寄山水
641次浏览
2021年02月21日 10:14
最佳经验
本文由作者推荐

-

2021年2月21日发(作者:银河护卫队2豆瓣)



多边形的面积










字母表示:


C=(a+b)


×


2
















面积


=


长×宽




字母表示:


S=ab



2


、正方形:



周长


=


边长×


4


字母表示:


C=4a















面积


=


边长×边长



字母表示:


S=a


2

< br>


3


、平行四边形:



面积


=


底×高





字母表示:



S=ah




1


、长方形:



周长


=(



+



)


×


2


— —【长


=


周长÷


2-

< br>宽;宽


=


周长÷


2-

< p>
长】




4



三角形的面积


=


底×高÷


2


——【底


=


面积×


2


÷高;高


=


面积×


2


÷底】




'






字母表示:



S=ah


÷


2



5



梯形的面积


=


(上底


+


下底)×高÷

< p>
2






字母表示:



S=



a+b


h


÷


2






上底


=< /p>


面积×


2


÷高-下底,

< br>





下底


=


面积×


2

÷高


-


上底;


< br>高


=


面积×


2

< br>÷(上底


+


下底)




一、




平行四边形面积公式与推导:



/


二、









?




S = ah






衍生公式




a = S


÷


h





h = S


÷


a



注意:在求平行四边形面积时,底和高必须对应。



★平行四边形面积公式的推导过程:剪拼、平移






沿着平 行四边形的任意


一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方 形的长就


是平行四边形的底,


这个长方形的宽就是平行四边形的 高。


因为长方形的面积


=


长×


宽,所以平行四边形的面积


=


底×高,用字母表 示


S=ah








~



三、



三角形面积公式与推导




1



























2

















































S =


底×高的一半



(




S = ah


÷


2





衍生公式




a = 2S


÷


h





h = 2S


÷


a



注 意:


1.


在求三角形面积时,底和高也必须对应。




在求三角形的高或底时,要先还原成平行四边形 ,所以×


2






★三角形面积公式的推导过程:



旋转、平移





将两个完全一样的三角形拼成一个


平 行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是


三角形的 高,拼成的平行四边形的面积是三角形面积的


2


倍。一个三角形 的面积是


这个平行四边形的面积一半。因为平行四边形的面积等于底×高,所以三角形的 面


积等于底×高÷


2


。用字母表示


S=a


×


h


÷


2











1


三角形 和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的


2

< br>倍,平行四边形的底是三角形的一半。





2


三角形和平行四边形的面积相等时,

< p>
若底相等,则三角形的高是平行四边形的


2


倍,平 行四边形的高是三角形的一半。



3


三 角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行


四边形的面积 是三角形的


2


倍。




★在直角三角形中,斜边最长。





三、等底等高的平行四边形与三角 形



.


等底等高的平行四边形面积相等





.


等底等高的三角形面积相等



.

< p>
等底等高的三角形面积是平行四边形面积的一半。





<



-


-


-


-


-


-


-


-