小学奥数整数裂项[1].题库版
留学印度-经理助理职责
 
整数裂项
 
 
知识点拨 
整数裂项基本公式
 
1
(1)
122334...(n1)n
(n1)n(n1)
3
1
(2) 
123234345...(n2)
(n1)n(n2)(n1)n(n1)
 
4
 
 
【例
1】 
122334L4950
=_________
【考点】整数裂项           【难度】3星          【题型】计算
【解析】 这是整数的裂项。裂项思想是:瞻前顾后,相互抵消。
设S=
122334L4950
 
1×2×3=1×2×3
2×3×3=2×3×(4-1)=2×3×4-1×2×3
3×4×3=3×4×(5-2)=3×4×5-2×3×4……
49×50×3=49×50×(51-48)=49×50×51-48×49×50
3S=1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51
S=49×50×51÷3=41650 
【答案】
41650
 
【巩固】 
1223344556677889910
________ 
【考点】整数裂项           【难度】3星
【题型】计算  
【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对
于项数较多的情况显然
不能这样进行计算.对于项数较多的情况,可以进行如下变形: 
n
n1
n2
n1
n
n1
11
n
n1
n
n1
n2
n1
n
n1
, 
333
11
1
1
1
所以原式
123
234123
L
9
10118910
 
333
3
3
1
91011330
 
3
另解:由于n
n1
n
2
n
,所以  
原式
1
2
12
2
2L9
2
9
 
例题精讲 
11
1
2
2
2
L9
2
12L9
91019910
330
 
62
1
采
用此种方法也可以得到
1223Ln
n1
n<
br>
n1
n2
这一结论.
3
【答案】
330
 
 
【例 2】
1447710L4952
=_________
【考点】整数裂项           【难度】3星          【题型】计算
【解析】 设S=
1447710L4952
1×4×9=1×4×7+1×4×2 
 
  
4×7×9=4×7×(10-1)=4×7×10-1×4×7
7×10×9=7×10×(13-4)=7×10×13-4×7×10 
………….
49×52×9=49×52×(55-46)=49×52×55-46×49×52
9S=49×52×55+1×4×2
S=(49×52×55+1×4×2)÷9=15572
【答案】
15572
 
 
【例 3】
123234345L91011
【考点】整数裂项           【难度】3星          【题型】计算
11
【解析】 
n
n1
n2
n
n1
n2
n3
<
br>
n1
n
n1
n
2
,所以, 
44
111
1
1<
br>
原式
1234
23451234
L
910111289101
1
 
444
4
4
1<
br>9101112
2970
 
4
1
从中还可以看出
,
123234345Ln
n1
<
br>
n2
n
n1
n2
n3
 
4
【答案】
2970
 
【例 4】 计算:
135357L171921
.  
【考点】整数裂项           【难度】3星          【题型】计算
【解析】 可以进行整数裂项. 
        
357
579
 
 
35791357
,
8
579113579
,
8
1719212315171921
, 
8
35
7913571719212315171921
L
88        
171921
        所以原式
135
135
1719212313571719212313
5
19503
 
88
也可适用公式. 
原式
32
3
32
52
5
52
L
<
br>192
19
192
 
3
2
2
2
3
5
2
2
2
5L
19
2
22
19
 
3
3
5
3
L19
3
4
35L19
<
br> 
1
3
3
3
5
3
L19
3
4
135L19
3
 
而
1
3
3
3
5
3
L
19
3
1
3
2
3
3
3
L20
3
2
3
4
3
6
3
L20
3
 
11
20
2
21
2
810
2
11
2
19900
, 
44
1
35L1910
2
100
,所以原式
199004100
319503
. 
【答案】
19503
 
 
【巩固】
计算:
123434565678L979899100
【考点】整数裂项           【难度】3星          【题型】计算
【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补
上,
再进行计算. 
记原式为
A
,再设
B234545
676789L96979899
, 
则
AB123
423453456L979899100
1
9798991001011901009880
, 
5<
br>现在知道
A
与
B
的和了,如果能再求出
A
与
B
的差,那么
A
、
B
的值就都可以求出来了. 
AB1
2342345345645675678L979899
100
4(123345567...979899)
 
22
22
4
2(21)4(41)6(61)
L
98(981)
 
4(2
3
4
3
6
3
L98
3
)4(246L98)
 
11
4849
2
50
2
41004
9
48010200
 
42
所以,
A
190
100988048010200
2974510040
.
【答案】
974510040
 
 
【例 5】 
2004
2003200320022002200120012000L21
【考点】整数裂项           【难度】3星          【题型】计算
【解析】 原式
2003220012L3212
2
135L20012003
2
12003
10022
2008008
 
其中也可以直接根据公式
1357L
2n1
n
2
得出
135L200120031002
2
【答案】
2008008
 
 
【例 6】
11!22!33!L20082008!
【考点】整数裂项           【难度】4星          【题型】计算
【解析】 观察发现
22!221(31)213!2!
,
33!3321(41)3214!3!
,……
20082008!200820082007
L
21
, <
br>(20091)20082007
L
212009!2008!可见,原式
1!(2!1!)(3!2!)L(2009!2008!)
2009!
 
【答案】
2009!
 
123456
L
99100
【例 7】
计算:
2345
L
9899
【考点】整数裂项
【难度】5星          【题型】计算  
B
【解析】 设原式=
A
AB122334L989999100
1
     
123012
<
br>
234123
L
<
br>991001019899100
3
1
99100101333300
3
BA1232L992501005000
B33330050003383
A33330050003283
 
【答案】
3383
 
3283