小学六年级数学求阴影面积与周长专项练习试题
新疆理工学院-高三家长会班主任发言稿
.              .           .
. 
小学六年级数学求阴影面积与周长专项练习 
例1.求阴影部分的面积。(单位:厘米)
 
 
 
例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米) 
 
 
 
 
例3.求图中阴影部分的面积。(单位:厘米) 
 
 
 
例4.求阴影部分的面积。(单位:厘米) 
 
 
 
 
 
例5.求阴影部分的面积。(单位:厘米) 
 
 
 
 
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?
 
 
 
 
 
例7.求阴影部分的面积。(单位:厘米) 
 
 
 
例8.求阴影部分的面积。(单位:厘米) 
  参考 
 
 
 
 
.              .           .
. 
 
 
 
 
 
 
例9.求阴影部分的面积。(单位:厘米)  
 
 
 
 
例10.求阴影部分的面积。(单位:厘米) 
 
 
 
 
 
 
 
例11.求阴影部分的面积。(单位:厘米) 
 
 
例12.求阴影部分的面积。(单位:厘米) 
 
 
例13.求阴影部分的面积。(单位:厘米)  
 
 
  参考 
 
 
.              .           .
. 
例14.求阴影部分的面积。(单位:厘米) 
 
 
例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。 
 
 
例16.求阴影部分的面积。(单位:厘米) 
  
 
 
例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米) 
例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。 
 
  参考 
.              .
.                           . 
例19.正方形边长为2厘米,求阴影部分的面积。 
 
20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。 
 
 
 
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。 
 
 
 
 
例22.
如图,正方形边长为8厘米,求阴影部分的面积。 
 
 
 
例23.图中的4
个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径
都是1厘米,那
么阴影部分的面积是多少? 
 
 
 
  参考 
.
.           .                           . 
 
例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中
的黑点是这些
圆的圆心。如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?
 
 
例25.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)
 
 
 
例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5
厘米,BE=2厘米,求图中阴
影部分的面积。 
 
 
 
 
例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为
圆心,
AD为半径的圆的一部分,求阴影部分的面积。 
 
例28.求阴影部分的面积。(单位:厘米) 
  
 
例29.图中直角三角
形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,
半径为
BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少? 
  参考 
.
.           .                           . 
例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40
厘米。求BC
的长度。  
 
例31.如图是一个正方形和半圆所组成的图形,其中P
为半圆周的中点,Q为正方形一边上的中点,求阴影
部分的面积。 
 
 
例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。求阴影部分的面积。 
 
 
例33.求阴影部分的面积。(单位:厘米) 
 
 
 
例34.求阴影部分的面积。(单位:厘米) 
 
  参考
.              .           .
. 
 
 
例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。
 
 
 
 
参考答案:
1:
解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,  
×-2×1=1.14(平方厘米)
 
2:解:这也是一种最基本的方法用正方形的面积减去
圆的面积。 
  设圆的半径为 r,因为正方形的面积为7平方厘米,所以 =7, 
所以阴影部分的面积为:7-=7-×7=1.505平方厘米 
3:解:最基本的方法之一。用四个
圆组成一个圆,用正方形的面积减去圆的面积, 
所以阴影部分的面积:2×2-π=0.86平方厘米。 
4:解:同上,正方形面积减去圆面积,
  16-π()=16-4π=3.44平方厘米
5:解:这是一个用最常用的方法解最常见的题,为方便起见, 
我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, 
π()×2-16=8π-16=9.12平方厘米 
另外:此题还可以看成是1题中阴影部分的8倍。
6:解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) 
π-π()=100.48平方厘米   (注:这和两个圆是否相交、交的情况如何无关)
7:解:正方形面积可用(对角线长×对角线长÷2,求) 
正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米
8:解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,
  所以阴影部分面积为:π()=3.14平方厘米
9:解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 
所以阴影部分面积为:2×3=6平方厘米
10:解:同上,平移左右两部分至中间部分,则合成一个长方形, 
  参考
.              .           .
. 
  所以阴影部分面积为2×1=2平方厘米 
  (注:
8、9、10三题是简单割、补或平移)
11:解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。 
(π
-π)×=×3.14=3.66平方厘米 
)÷2=14.13平方厘米
12:解:三个部分拼成一个半圆面积.π(
13:解:
连对角线后将叶形剪开移到右上面的空白部分,凑成正方形的一半. 
所以阴影部分面积为:8×8÷2=32平方厘米
14:解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米 .
15:分析: 此题比上面的题有一定难度,这是叶形的一个半. 
解:
设三角形的直角边长为r,则
12÷2=6, 
阴影部分面积为:(3π-6)×=5.13平方厘米 
=12,=6 圆面积为:π÷2=3π。圆内
三角形的面积为
16:解:[π+π-π]=π(116-36)=40π=125.6平方厘米 17:解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形
AED、BCD面积和。所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米 
18:解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长:2×3.14×3÷2=9
.42厘
米 
19:解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个
矩形。所以面积为:1×2=2
平方厘米 
20:解:设小圆半径为r,4=36, r=3,
大圆半径为R,
半个圆环,所以面积为:π(
=2=18,将阴影部分通过转动移在一起构成<
br>-)÷2=4.5π=14.13平方厘米
21:解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,
  所以面积为:2×2=4平方厘米 
22: 解法一:
将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆. 
阴影部分为一个三角形和一个半圆面积之和. π(
解法二: 补上两个空白为一个完整的圆.
    所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π(
所以阴影部分的面积为:π()-8π+16=41.12平方厘米 
)÷2-4×4=8π-16
)÷2+4×4=8π+16=41.12平方厘米 
23:
解:面积为4个圆减去8个叶形,叶形面积为:π
所以阴影部分的面积为:4π-8(π-1)=8平方厘米 
-1×1=π-1 
24:
分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去
  参考 
个圆,
.              .           .
. 
这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.
解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米
25: 分析:四个空白部分可以拼成一个以2为半径的圆. 
所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米
26: 解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三
角形ACB面积
减去个小圆面积,为:
5×5÷2-π÷4=12.25-3.14=9.36平方厘米 
27: 解:
因为2==4,所以=2 
   以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,
  π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米
28: 解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,  
三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π
所以阴影面积为:12.5+7.125=19.625平方厘米 
÷2-5×5]÷2=7.125
解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π 
阴影
面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米
29: 解:
甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC, 
此两部分差即为:π
 
×-×4×6=5π-12=3.7平方厘米
30:解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则 
40X÷2-π÷2=28 所以40X-400π=56 则X=32.8厘米 
31:
解:连PD、PC转换为两个三角形和两个弓形, 
两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5 
两弓形PC、PD面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米
32: 解:三角形DCE的面积为:×4×10=20平方厘米 
梯形ABCD的面积为:(4+6)×4=20平方厘米 从而知道它们面积相等,则三角形ADF面积等于三角
形
EBF面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米
33: 解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为  
参考 
.              .           .
. 
  (π+π)-6=×13π-6=4.205平方厘米 
34:
解:两个弓形面积为:π
为 
-3×4÷2=π-6阴影部分为两个半圆面积减去两个弓形面积
,结果
π+π-(π-6)=π(4+-)+6=6平方厘米 
35:
解:将两个同样的图形拼在一起成为圆减等腰直角三角形 
  [π÷4-×5×5]÷2 
 
=(π-)÷2=3.5625平方厘米
欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉
页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语;
1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 
2、现在你不玩命的学,以后命玩你。、我不知道年少轻狂,我只知道胜者为王。、不要做金钱、权利的奴隶;应
学会做“金钱、权利”的主人。、什么时候离光明最近?那就是你觉得黑暗太黑的时候。、最值得欣赏的风景,是
自己奋斗的足迹。、压力不是有人比你努力,而是那些比你牛×几倍的人依然比你努力。
 
  参考