北师大版初中数学三角形中考真题练习
别妄想泡我
863次浏览
2021年01月30日 18:31
最佳经验
本文由作者推荐
-
中考数学总复习
专题基础知识回顾四
三角形
一、单元知识网络:
二、考试目标要求:
1
.了解三角形 有关概念(内角、外角、中线、高、角平分线)
,会画出任意三角形的角平分线、中线
和高,了解三角形的稳定性
.
2
.探索并掌握三角形中位线的性质
.
3
.了解全等三角形的概念,探索并掌握两个三角形全等的条件
.
4
.了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰 三角形的条件;
了解等边三角形的概念并探索其性质
.
5
.了解直角 三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件
.
6
.体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角 三角形
.
三、知识考点梳理
知识点一、三角形的概念及其性质
1
.三角形的概念
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形
.
2
.三角形的分类
(1)
按边分类:
(2)
按角分类:
3
.三角形的内角和外角
(1)
三角形的内角和等于
180
°
.
(2)
三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于 任何一个和它不相邻的内角
.
4
.三角形三边之间的关系
三角形任意两边之和大于第三边,任意两边之差小于第三边
.
5
.三角形内角与对边对应关系
在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边
.
6
.三角形具有稳定性
.
知识点二、三角形的“四心”和中位线
三角形中的四条特殊的线段是:高线、角平分线、中线、中位线
.
1
.内心:
三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等
.
2
.外心:
三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等
.
3
.重心:
三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的
2
倍
.
4
.垂心:
三角形三条高线的交点
.
5
.三角形的中位线:
连结三角形两边中点的线段是三角形的中位线
.
中位线定理:
三角形的中位线平行于第三边且等于第三边的一半
.
要点诠释:
(1)
三角形的内心、重心都在三角形的内部
.
(2)
钝角三角形的垂心、外心都在三角形的外部
.
(3)
直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点
.
(4)
锐角三角形的垂心、外心都在三角形的内部
.
知识点三、全等三角形
1
.定义:
能完全重合的两个三角形叫做全等三角形
.
2
.性质:
(1)
对应边相等
(2)
对应角相等
(3)
对应角的平分线、对应边的中线和高相等
(4)
周长、面积相等
3
.判定:
(1)
边角边
(SAS)
(2)
角边角
(ASA)
(3)
角角边
(AAS)
(4)
边边边
(SSS)
(5)
斜边直角边
(HL)(
适用于直角三角形
)
要点诠释:
判定三角形全等至少必须有一组对应边相等
.
知识点四、等腰三角形
1
.定义:
有两条边相等的三角形叫做等腰三角形
.
2
.性质:
(1)
具有三角形的一切性质
.
(2)
两底角相等
(
等边对等角
)
(3)
顶角的平分线,底边中线,底边上的高互相重合
(
三线合一
)
(4)
等边三角形的各角都相等,且都等于
60
°
.
3
.判定:
(1)
如果一个三角形有两个角相等,那 么这两个角所对的边也相等
(
等角对等边
)
;
(2)
三个角都相等的三角形是等边三角形;
(3)
有一个角为
60
°的等腰三角形是等边三角形
.
要点诠释:
(1)
腰、底、顶角、底角是等腰三角形特有的概念;
(2)
等边三角形是特殊的等腰三角形
.
知识点五、直角三角形
1
.定义:
有一个角是直角的三角形叫做直角三角形
.
2
.性质:
(1)
直角三角形中两锐角互余;
(2)
直角三角形中,
30
°锐角所对的直角边等于斜边的一半
.
(3)
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直 角边所对的锐角等于
30
°
.
(4)
勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方
.
(5)
勾股定理逆定理:如果三角形的三边长
a
,
b,
c
满足
a2+b2=c2
,那么这个三角形是直角三角形
.
(6)
直角三角形中,斜边上的中线等于斜边的一半;
(7)SRt
△
ABC=
3
.判定:
ch=
ab
,其中
a
、
b
为两直角边,
c
为斜边,
h
为斜边上的高
.
(1)
两内角互余的三角形是直角三角形;
(2)< br>一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形
.
(3)
如果三角形两边的平方和等于第三边的平方,则这个三角形是直角 三角形,第三边为斜边
.
知识点六、线段垂直平分线和角平分线
1
.线段垂直平分线:
经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线
.
线段垂直平分线的定理:
(1)
线段垂直平分线上的点与这条线段两个端点的距离相等
.
(2)
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上
.
线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合
.
2
.角平分线的性质:
(1)
角的平分线上的点到角的两边的距离相等;
(2)
到角的两边的距离相等的点在角的平分线上;
(3)
角的平分线可以看做是到角的两边距离相等的所有点的集合
.
四、规律方法指导
1
.数形结合思想
本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图
形的基础上,求线段或角的度数,证明线段或角相等
.
在几何学习中,应会利用几何图 形解决实际问题
.
2
.分类讨论思想
在没 给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三
角形、直角三角形、钝角三角形
.
3.
化归与转化思想
在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理 等转化手段,归
结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与 形的转化;一般与特殊的
转化
.
4
.注意观察、分析、总结
应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活 运用,注重积累解题思路和
运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明
.
学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析 ,综合,转化等数学思想
.
经典例题透析
考点一、三角形的概念及其性质
1
.
(1
)
(
2010
山东济宁)若一个三角形三个内角度数的比为
2
︰
3
︰
4
,那么这个三角形是(
)
A.
直角三角形
B.
锐角三角形
C.
钝角三角形
D.
等边三角形
思路点拨:三角形 的内角和为
180
°,三个内角度数的份数和是
9
,每一份度数是
2 0
,则三个内角度数分别为
40
°、
60
°、
80
°,是锐角三角形
.
答案:
B
(
2
)三角形的三边分别为
3
,
1-2a
,
8< br>,则
a
的取值范围是
( )
A
.
-6
<
a
<
-3
B
.
-5
<
a
<
-2
C
.
2
<
a
<
5
D
.
a
<
-5
或
a
>
-2
思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性
.
解析:根据三角形三边关系得:
8-3
<
1-2a
<8+3
,解得
-5
<
a
<
-2
,应选
B.
举一反三:
【变式
1
】已知
a
,
b
,
c
为△
ABC
的三条边,化简
思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论
.
解析:∵
a
,
b
,
c
为△< br>ABC
的三条边
∴
a-b-c
<
0
,
b-a-c
<
0
∴
=(b+c-a)+(a+c-b)=2c.
得
_________.
【变式
2
】有五根细木棒,长度分别为
1cm
,
3cm
,
5cm
,
7cm
,
9cm
,现 任取其中的三根木棒,组成一个三角形,
问有几种可能
( )
A.1
种
B.2
种
C.3
种
D.4
种
解析:只有
3
、
5
、
7
或< br>3
、
7
、
9
或
5
、
7
、< br>9
三种
.
应选
C.
【变式
3
】等腰三角形中两条边长分别为
3
、
4
,则三角形的周长是
_________.
思路点拨:要分类讨论,给出的边长中,可能分别是腰或 底
.
注意满足三角形三边关系
.
解析:
(1 )
当腰为
3
时,周长
=3+3+4=10
;
(2)
当腰为
4
时,周长
=3+4+4=11.
所以答案为
10
或
11.
2
.
(
1
)
(2010
宁波市)如图,在△
ABC
中,
AB
=
AC< br>,∠
A
=
36
°,
BD
、
CE
分别 是△
ABC
、△
BCD
的角平分线,
则图中的等腰三角形有
(
)
A
.
5
个
B
.
4
个
C
.
3
个
D
.
2
个
考点:等腰三角形
答案:
A
(
2
)如图 在△
ABC
中,∠
ABC=90
°,∠
A=50
°,
BD
∥
AC
,则∠
CBD
的度数是
______.
考点:直角三角形两锐角互余
.
解析:△
ABC
中,∠
C=
∠
ABC-
∠
A =90
°
-50
°
=40
°
又∵
BD
∥
AC
,
∴∠
CBD=
∠
C=40
°
.
3
.已知△
ABC
的三个内角∠
A
、∠
B
、∠
C
满足关系式∠
B+
∠
C=3
∠
A
,则此三角形中
( )
A.
一定有一个内角为
45
°
B.
一定有一个内角为
60
°
C.
一定是直角三角形
D.
一定是钝角三角形
考点:三角形内角和
180
°
.
思路点拨: 会灵活运和三角形内角和等于
180
°这一定理,即∠
B+
∠
C=1 80
°
-
∠
A.
解析:∵△ABC
中,∠
A+
∠
B+
∠
C=180
°,∴ ∠
B+
∠
C=180
°
-
∠
A
∵∠
B+
∠
C=3
∠< br>A
,∴
180
°
-
∠
A=3
∠
A< br>,∴
∠
A=45
°,∴选
A
,其它三个答案不能确定
.
举一反三:
【变式
1
】下图能说明∠
1
>∠
2
的是
( )
考点:三角形外角性质
.
思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角
.
解析:
A
中∠
1
和∠
2
是对顶角,∠< br>1=
∠
2
;
B
中∠
1
和∠
2
是同位角,若两直线平行则相等,不平行则不一定相
等;
C
中∠
1
是三角形的一个外角,∠
2
是和它不相邻的内角,所以∠
1
>∠
2. D
中∠
1
和∠
2
的大小相等
.
故选
C.
总结升华:三角形内角和
180
°以及边角之间的关系,在习题 中往往是一个隐藏的已知条件,在做题时要注意
审题,并随时作为检验自己解题是否正确的标准
.
【变式
2
】如果三角形的一个内角等于其他两个内角的和,这个三角形是
( )
A.
锐角三角形
B.
钝角三角形
C.
直角三角形
D.
不能确定
思路点拨:理解直角三角形定义,结合三角形内角和得出结论
.
解析:若△
ABC
的三个内角∠
A
、∠
B
、∠
C
中,∠
A+
∠
B=
∠
C
又∠
A+
∠
B+
∠
C=180
°,所以
2
∠
C=180
°,可得∠
C=90
°,所以选
C.
【变式
3
】下列命题:
(1)
等边三角形也是等腰三角形;
(2)
三角形的外角等于两个内角的和;
(3)
三角形中最大
的内角不能小于
60
°;
(4)
锐角三角形中,任意两 内角之和必大于
90
°,其中错误的个数是
( )
A.0
个
B.1
个
C.2
个
D.3
个
思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定
.
解析:
(2)
中应强调三角形的外角等于不相邻的两个内角的和;三角形中 最大的内角若小于
60
°,则三个角的
和就小于
180
°,不符合三 角形内角和定理,故
(3)
正确;
(4)
三角形中,任意两内角之和若不大于
90
°,则另一个
内角就大于或等于
90
°,就不能是锐角三角形< br>.
所以中有
(2)
错,故选
B.
考点二、三角形的“四心”和中位线
4
.
(
1
)与三角形三个顶点距离相等的点是这个三角形的
( )
A.
二条中线的交点
B.
二条高线的交点
C.
三条角平分线的交点
D.
三边中垂线的交点
考点:线段垂直平分线的定理
.
思路点拨:三角形三边垂直平 分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等
.
答案
D若改成二边中垂线的交点也正确
.
(2)
(
2010
四川眉山)
如图,将第一个图
(图①)
所示的正三角形连结各边中点进行分割,得到 第二个图(图②)
;
再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图 (图③)
;再将第三个图中最中间的小
正三角形按同样的方式进行分割,„„,则得到的第五个 图中,共有
________
个正三角形.
考点:三角形中位线找规律
思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;
图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;
图⑤有(1+4+4+4+4)个正三角形;„.
答案:
17
5
.一个三角形的内心在它的一条高线上,则这个三角形一定是
( )
A.
直角三角形
B.
等腰三角形
C.
等腰直角三角形
D.
等边三角形
考点:三角形角平分线定理
.
思路点拨:本题考查三角形的内 心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质
.
所以该三角形是等 腰三角形
.
故选
B.
举一反三:
【变式
1
】如图,已知△
ABC
中,∠
A=58
° ,如果
(1)O
为外心;
(2)O
为内心;
(3)O
为垂心 ;分别
求∠
BOC
的度数
.
考点:三角形外心、内心、垂心性质
.
解析:∠< br>A
是锐角时,
(1)O
为外心时,∠
BOC=2
∠
A =116
°;
(2)O为内心时,∠
BOC=90
°
+
∠
A=119
°;
(3)O
为垂心,∠
B OC=180
°
-
∠
A=122
°
.
【变式
2
】如果一个三角形的内心,外心都在三角形内,则这个三角形是
( )
A.
锐角三角形
B.
只有两边相等的锐角三角形
C.
直角三角形
D.
锐角三角形或直角三角形
解析:三角形的内心都 在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点
上、钝角三角形的 外心三角形外部
.
故选
A.
【变式
3
】能把一个三角形分成两个面积相等的三角形的线段,是三角形的
( )
A.
中线
B.
高线
C.
边的中垂线
D.
角平分线
思路点拨:三角形面积相等,可利用底、高相等或相同得到
.
解析:三角形的一条中线分得的两个三角形底相等,高相同
.
应选
A.
6
.
(
1
)
(
2010广东茂名)如图,吴伯伯家有一块等边三角形的空地
ABC
,已知点
E
、
F
分别是边
AB
、
AC
的中点,量得
EF
=
5
米,他想把四边形
BCFE
用篱笆围成一圈放养小鸡,则需用篱笆的长是 (
)
A
、
15
米
B
、
20
米
C
、
25
米
D
、
30
米
考点:三角形中位线定理
.
思路点拨:BE
=
AE=5
,CF=FA=5,BC=2EF=10
答案:
C
(
2
)已知△
ABC
中,
AB
∶
BC
∶
CA=3
∶
2
∶
4
,
AB=12
厘米,
D
,
E
,
F
分别是
AB
,
BC
,
AC
的中点,则△
DEF
的周长
是
________.
考点:三角形中位线定理
.
思路点拨:本题考查三角形的中位线,先求出△
ABC
各边的边长,由三条 中位线构成的△
DEF
是原三角形周长
的一半
.
解析:由已知求出△
ABC
另两边长为
BC=8
厘米,
AC=1 6
厘米
∵
D
,
E
,
F
分别是
AB
,
BC
,
AC
的中点,∴
DE
、
EF
、
DF
是△
A BC
的中位线
∴
DE=
举一反三:
AC=8 EF=
AB=6 DF=
BC=4
,∴△
DEF
的周长等于
8+6+4=18
厘米
.
【变式
1
】求证:三角形的一条中位线与第三边上的中线互相平分
.
思路点拨:本题考查三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半
.
解析:已知:如图,在△
ABC
中,
AD=DB
,
BE=EC
,
AF=FC.
求证:
AE
、
DF
互相平分
.
证明:连结
DE
、
EF
∵
AD=DB
,
BE=CE
∴
DE
∥
AC(
三角形中位线定理
)
同理
EF
∥
AB
∴四边形
ADEF
是平行四边形
∴
AE
、
DF
互相平分
(
平行四边形的对角线互相平分
).
【变 式
2
】已知:如图,四边形
ABCD
中,
E
、
F< br>、
G
、
H
分别是
AB
、
BC
、CD
、
DA
的中点,
四边形
EFGH
是平行四边形吗< br>?
为什么
?
思路点拨:考虑到
E
、
F< br>是
AB
、
BC
的中点,因此连结
AC
,就得到
EF
是△
ABC
的中位线,
由三角形中位线定理得,
EFGH是平行四边形
.
证明:连结
AC
,同理
,则
EF
∥
GH
,
EF=GH
,所以四边形
∵
E
、
F
是
A B
、
BC
的中点,∴
EF=
,
EF
∥
AC
同理,
GH=
,
GH
∥
AC
,
∴
EF
∥
GH
,
EF=GH
∴四边形
EFGH
是平行四边形
.
考点三、全等三角形
7
.对于下列各组条件,不能判定△
≌△
的一组是
( )
A.
∠
A=
∠
A
′,∠
B=
∠
B
′,
AB=A
′
B
′
B.
∠
A=
∠
A
′,
AB=A
′
B
′,
AC=A
′
C
′
C.
∠
A=
∠
A
′,
AB=A
′
B
′,
BC=B
′
C
′
=A
′
B
′,
AC=A
′
C
′,
BC=B
′
C
′
思路点拨:判定三角形全等的条件中 ,已知两边及一角必须是两边及其夹角,而已知两角一边和三边都可以判
定三角形全等
.
解析:
A
可利用
ASA
判定;
B可利用
SAS
判定;
D
可利用
SSS
判定
.< br>而
C
是两边和一边对角对应相等,不能判定
三角形全等
.
故选
C.
举一反三:
【变式
1
】两个三角形有以下三对元素对应相等,则不能判定全等的是
( )
A.
一边和任意两个角
B.
两边和它们的夹角
C.
两个角和它们一角的对边
D.
三角对应相等
思路点拨:两个三角形中,三角对应相等不能证明三角形全等
.
解析:
A
的判定方法为
ASA
或
AAS
;
B的判定方法为
SAS
;
C
的判定方法为
AAS
;要判定 三角形全等必须有一个
元素是边,所以
D
不能判定
.
故选
D .
8
.
(
2010
湖南长沙)在正方形ABCD
中,
AC
为对角线,
E
为
AC
上一点 ,连接
EB
、
ED
.
(
1
)求证:△
BEC
≌△
DEC
;
(
2
)延长
BE
交
AD
于< br>F
,当∠
BED=120
°时,求∠
EFD
的度数.
考点:三角形全等的判定及性质
.
思路点拨:
(
1
)利用
ASA
判定
;(2)
利用
△
BEC
≌△
DEC
答案:
(
1
)证明:∵四边形
ABCD
是正方形
∴
BC
=
CD
,∠
ECB
=∠
ECD
=
45
°
又
EC
=
EC
∴△
ABE
≌△
ADE
(
2
)∵△
ABE
≌△
ADE
∴∠
BEC
=∠
DEC
=
∠
BED
∵∠
BED=
120
°∴∠
BEC
=
60
°=∠
AEF
∴∠
EFD
=
60
°
+45
°=
105
°
举一反三:
【变式
1
】如图,已知
:AC =DB
,要使
≌
,只需增加一个条件是
___________.
考点:三角形全等的判定
.
思路点拨:增加条件判定三角形全等时,题中已有一条公共边这一条件,答案不唯一
.
解析:填
AB=DC
,可利用
SSS
;填∠< br>ACB=
∠
DBC
,可利用
SAS.
【变式
2
】如图,已知,△
ABC
中,∠
C=90
°,AM
平分∠
CAB
,
CM=20cm
,那么
M
到
AB
的距离是
________.