北师大版六年级数学下册教案-圆柱的体积2教学设计

巡山小妖精
612次浏览
2021年02月08日 05:46
最佳经验
本文由作者推荐

职场笑话-

2021年2月8日发(作者:黄旭)





圆锥的体积。< /p>


(


教材第


11~12


)




1


.


结合具体情境和实践活动


,


了解圆锥的体积和容积的含义


,


进一步体会物 体体积和容积


的含义。



2

< p>
.


经历“类比猜想——验证说明”的过程


,


探索求圆锥体积的计算方法


,


掌握圆锥体积的


计算方法


,


能正确利用圆锥的体积解决 一些简单的实际问题。



3


.


通过推导圆锥的体积计算公式


,


培养学生初步的 空间观念、动手操作能力和逻辑思维


能力。




重点


:


圆锥 体积计算公式的推导过程。



难点


:< /p>


正确理解圆锥的体积计算公式。




1


.


多媒体课件。



2


.


等底等高、等底不等高、等高不等 底的圆锥和圆柱共六套


,


细沙或水


,< /p>


实验报告单


,


带有


刻度的直尺


,


绳子等。






1


.


夏天


,


森林里闷 热极了


,


小动物们都热得喘不过气来。小白兔去“动物超市”购 物


,


在熊


伯伯那儿买了一根圆柱形雪糕 。这一切都被躲在一旁的狐狸看见了


,


它就去熊伯伯那儿买了< /p>


一根圆锥形雪糕。小白兔刚张开嘴


,


满头 大汗的狐狸拿着一个圆锥形雪糕一溜烟跑了过来。


(


图中的圆柱 形和圆锥形雪糕是等底等高的


)



引导学生围绕问题展开讨论。



问题一


:


狐狸狡猾地问


:


小白兔


,


用我手中的雪糕跟你换


,


怎么样


?



(


如果这时小白兔和狐


狸换了雪糕


,


你觉得小白兔有没有上当


)



问题二


:(


动画演示


)


狐狸手上又多了一个同样大小的圆锥形雪糕。

(


小白兔这时和狐狸换


雪糕


,


你觉得公平吗


)



问题三


:


如果你是小白兔


,

< p>
狐狸手中的圆锥形雪糕有几个时


,


你才肯与它交换


?(


把你的想


法与小组同学交流一下< /p>


,


再向全班同学汇报


)

< br>


过渡


:


小白兔究竟跟狐狸怎样 交换才公平合理呢


?


学习了“圆锥的体积”后

< br>,


你就知道答


案了。



【设计意图


:


在引入新知时

,


创设了一个有趣的童话情境


,


使 枯燥的数学问题变为活生生


的生活现实


,


让数学课堂充满生命活力。学生在判断公平与不公平中蕴含了对等底等高圆柱


和圆锥体 积关系的猜想


,


他们在这一情境中敢猜想、

要猜想、


乐猜想


,


在猜想中交流< /p>


,


在交流中


感悟


,


自然地提出了一些富有挑战性的数学问题


,

< br>从而引发了学生进一步探究的强烈欲望】




1


2


.


课 件出示教材第


11


页主题图。




:


根据以上图片


,


你能获得哪些数学信息


?


< p>


1


:


小麦堆是圆锥形的 。




2


:< /p>


笑笑想知道这堆小麦的体积是多少。




:


那我们怎样才能帮助笑笑解决这个问题呢

?




:


计算这堆小麦的体积


,


实际上就是要计算这个圆锥的体积。




:


今天就利用 我们学过的知识探讨新问题


,


学习怎样计算圆锥的体积。


(


板书


:


圆锥的体< /p>



)




1


.


探讨圆锥的体积计算公式。




:


怎样探讨圆锥的体积计算公式呢


?


在回答这个问题之前


,


请同学们先想一想


,


我们是怎


样推导圆柱体积计算公式的


?




:

< p>
长方体的底面积


=


圆柱的底面积

< br>,


长方体的高


=


圆柱的高


,


因此圆柱的体积


=


底面积


×


高。




:


我们可以借鉴这种方法。



为了我们研究圆锥体积的方便


,


我准备了一 个圆柱和一个


圆锥。我做你们看


,


说说 它们有什么联系


?(


教师演示


)



(


1


)

< p>


:


你发现了什么


?(< /p>


这个圆柱和圆锥的形状有什么关系


)


< /p>



:


底面积相等


,


高也相等。



:


底面积相等


,


高也相等


,


用数学语言说就叫等底等高。


(


板书


:


等底等高


)



(


2


)



:


既然它们是等底等高的


,


那么我们就跟求圆柱体积一样


,


就用 “底面积


×


高”来求圆


锥的体积行不行


?


为什么


?




:


不行


,< /p>


因为圆锥的体积小。




:(


把圆锥套在透明的圆柱里


)


是啊


,


圆锥的体积小


,


那你估计一下它们的体积大小有什么


样的关系呢


?< /p>



(


指名发言


,


说出自己的猜想


)


< br>生


1


:


2


倍。




2


:


3


倍。



……




:< /p>


我有一个实验


,


能知道这个答案


,


你们想不想试试看。



师生合做实验。


(


出示课前准备的沙子


)




:


下 面我们利用实验的方法来探究圆锥体积的计算方法。


老师准备了两个圆锥形容器、


两个圆柱形容器和一些沙子


,


你们觉得这个实 验要怎么做呢


?



< br>:


实验时


,


先往等底等高的圆柱


(


或圆锥


)


容 器里装满沙子


(


用直尺将多余的沙子刮掉


),



入圆锥


(

或圆柱


)


容器里


,


看能倒几次。




:


你们猜能倒几次


?(


不给答案

< br>,


保留兴趣与吸引力


)




1


:


1

< p>
次。




2


:


2




……




:< /p>


先倒一个圆锥的沙子


,


请你们观察一下< /p>


,


要不要改变你们刚才的猜想


?



学生会发现猜两倍的太少了。




:


要不要再猜一次


?



再倒一个圆锥的沙子


,

< br>再让学生一起观察。




:


怎样


,


这时你怎么想的

?



这时学生的猜想会更接近答案


,


但不一定准确


,


不过思想会进一步升 华。




:


你 们觉得再倒一次能倒得下吗


?


再倒一次你会得出什么结论


?



学生实验


,


完成回报。




1


:



3


次倒不 下


,


圆柱的体积是圆锥体积的


3


倍多一点。




2< /p>


:



3


次倒不满


,


圆柱的体积是圆锥体积的


3


倍少一点。




2

职场笑话-


职场笑话-


职场笑话-


职场笑话-


职场笑话-


职场笑话-


职场笑话-


职场笑话-