知识点讲解:约分和通分
-
v1.0
可编辑可修改
知识点讲解:约分和通分
1
、约分的方法:用分子和分母的公约数(
1
除外
)去除分子、分母;通常要除到得出最简
分数为止。
2
p>
、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个
最小公倍数作分母的分数
知识点讲解:百分数概念
1
、
表示一个数是另一个数的百分之几的数
叫做百分数
,
也叫做百分率
或百分比。
2
、
3
、
2
p>
、百分数通常用
来表示。百分号是表示百分
数的符号。
知识点讲解:数的性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数
和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1
p>
、小数点向右移动一位,原来的数就扩大
10
倍;小数点向右移动两位,
原来的数就扩
大
< br>100
倍;小数点向右移动三位,原来的数就扩大
100
0
倍……
2
、小数点向左移动一位,原来的数
就缩小
10
倍;小数点向左移动两位,
原来的数就缩
小
100
倍;小数点向左
移动三位,原来的数就缩小
1000
倍……
3
、小数点向左移或者向右移位数不够时,要用“
0
补足位。
1
v1.0
可编辑可修改
(四)分数的基本性质
分数的基本性质:分数的分子和分
母都乘以或者除以相同的数(零除外)
,分数的大小
不变。
p>
(五)分数与除法的关系
1
、被除数÷除数
=
被除数
/
除数
2
p>
、因为零不能作除数,所以分数的分母不能为零。
3
、被除数
相当于分子,除数相当于分母。
知识点讲解:整数四则运算
1
、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法
里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数<
/p>
+
加数
=
和
p>
一个加数
=
和-
另一个加数
2
、整数减法:
已知两
个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
2
v1.0
可编辑可修改
在减法里,
已知的和叫做被减数,已
知的加数叫做减数,
未知的加数叫做差。
被减数是
总数,减数和差分别是部分数。
加法和减法互为逆运算。
3
、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法
里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法
里,
0
和任何数相乘都得
0.
1
和任何数相乘都的任何数。
一个因数×
一个因数
=
积
<
/p>
一个因数
=
积÷另一个因数
4
、整数除法:
已知两
个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,
已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,
0
不能做除数。因为
0
和任何数相乘
都得
0
,所以任何一个数除以
0
,均得
不到一个确定的商。
被除数
÷除数
=
商
除数
=
被除数÷商
< br>被除数
=
商×除数
3
v1.0
可编辑可修改
知识点讲解:小数四则运算
1
、小数加法:
小数加
法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2
、小数减法:
小数减
法的意义与整数减法的意义相同。
已知两个加数的和与其中的一个加数,
求另一
个加数的运算
.
3
、小数乘法:
小数乘
整数的意义和整数乘法的意义相同,
就是求几个相同加数和的简便运算;
一个数
乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少
。
4
、小数除法:
小数除
法的意义与整数除法的意义相同,
就是已知两个因数的积与其中一个因数,
求另
一个因数的运算。
5
、乘方
:
求几个相同因数的积的运算叫做乘方。例如
3
×
3 =9
知识点讲解:分数四则运算
1
、分数加法:分数加法的意义与整数加法的意义相同。
是把两个数合并成一个数的运算。
4
v1.0
可编辑可修改
2
、分数减法:分数减法的意义与整
数减法的意义相同。已知两个加数的和与其中的一
个加数,求另一个加数的运算。
3
、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加
数和的简便
运算。
4
、乘积
是
1
的两个数叫做互为倒数。
5
p>
、分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中
一个因数,求另一个因数的运算。
知识点讲解:数的运算定律
1
、加法交换律:两个数相加,交换加数的位置,它们的和不变,即
a+
b=b+a
。
2
、加法
结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个
数相加,再
和第一个数相加它们的和不变,即(
a+b)+c=a+(b+c)
。
3
、乘法交换律:两个数相乘,交换
因数的位置它们的积不变,即
a
×
b=
b
×
a
。
4
p>
、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个
数相乘,再和第一个数相乘,它们的积不变,即
(a
×
b)
×
c=a
< br>×
(b
×
c)
。
5
、乘法分配律:两个数的和与一个
数相乘,可以把两个加数分别与这个数相乘再把两
个积相加,即
(a+b)
×
c=a
×
c+b
×
c
。
6
、减法的性质:从一个数里连续减
去几个数,可以从这个数里减去所有减数的和,差
不变,即
a-
b-c=a-(b+c)
。
5
v1.0
可编辑可修改
知识点讲解:数的运算法则
1
、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位
进一。
2
、整数减法计算法则:相同数位对
齐,从低位加起,哪一位上的数不够减,就从它的
前一位退一作十,和本位上的数合并在
一起,再减。
3
、整数乘法计算法则:先用一个因
数每一位上的数分别去乘另一个因数各个数位上的
数,
用因数哪
一位上的数去乘,
乘得的数的末尾就对齐哪一位,
然后把各次乘
得的数加起来。
4
、整数除法计算法则:先从被除数
的高位除起,除数是几位数,就看被除数的前几位;
如果不够
除,就多看一位,除到被除数的哪一位,
商就写在哪一位的上面。
如果哪一位上不
够商
1
,要补“
p>
0
”占位。每次除得的余数要小于除数。
5
p>
、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就
从积的右边起数出几位,点上小数点;如果位数不够,就用“
0
”补足。
6
、除数是整数的小数除法计算法则
:先按照整数除法的法则去除,商的小数点要和被
除数的小数点对齐;如果除到被除数的
末尾仍有余数,就在余数后面添“
0
”
,再继续除。
7
、除数是小数的除法计算法则:先
移动除数的小数点,使它变成整数,除数的小数点
也向右移动几位(位数不够的补“
p>
0
”
)
,然后按照
除数是整数的除法法则进行计算。
8
、同分母分数加减法计算方法
p>
:
同分母分数相加减,只把分子相加减,分母不变。
9
、
异分母分数加减法计算方法
:
先通分,
然后按照同分母分数加减法的的法则进行计算。
6
v1.0
可编辑可修改
10
、带
分数加减法的计算方法
:
整数部分和分数部分分别相加减,再把
所得的数合并起
来。
11
、分
数乘法的计算法则
:
分数乘整数,用分数的分子和整数相乘的积
作分子,分母不
变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
12
、分数除法的计算法则
:
甲数除以乙数(
0
除外)
,等于甲
数乘乙数的倒数。
知识点讲解:数的运算顺序
1
、小数四则运算的运算顺序和整数四则运算顺序相同。
2
p>
、分数四则运算的运算顺序和整数四则运算顺序相同。
3
、没有括号的混合运算
:
同级运算从左往右依次运算;两级运算
先算乘、除法,后算加减法。
4
、有括号的混合运算
:
先算小括号里面的,再算中括号里面的,最后算括号外面的。
5
p>
、第一级运算:加法和减法叫做第一级运算。
6
p>
、第二级运算:乘法和除法叫做第二级运算。
知识点讲解:解答简单应用题
7
v1.0
可编辑可修改
(
1
)
p>
简单应用题:
只含有一种基本数量关系,或用一步运算解答的应用题
,通常叫做简单
应用题。
(
2
)
解题步骤:
a
、审题
理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不
添字边读边
思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b
p>
、选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么
着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行
解答并标明正确的单位名称。
c
、检验
:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是
否符合题意
。如果发现错误,马上改正。
d
、答案:根据计算的结果,先口答
,逐步过渡到笔答。
知识点讲解:解答复合应用题
(
p>
1
)有两个或两个以上的基本数量关系组成的,用两步或两步以上运
算解答的应用题,通
常叫做复合应用题。
(
p>
2
)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
8
v1.0
可编辑可修改
比较两数差与倍数关系的应用题。
(
p>
3
)含有两个已知条件的两步计算的应用题。
已
知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)
。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)
。
< br>
(
4
)解答连乘连除应用题。
(
p>
5
)解答三步计算的应用题。
(
p>
6
)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的
应用题,他们的
数量关系、
结构、
和解
题方式都与正式应用题基本相同,
只是在已知数或未知数中间含有小
数。
知识点讲解:复合应用题
1
、解答加法应用题:
a
p>
、求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b
、
求比一个数多几的数应用题:
已知甲数是多少和乙数比甲数多多少,
求乙数是多少。
2
、解答减法应用题:
a
p>
、求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
9
v1.0
可编辑可修改
b
、求两个数相差的多少的应用题:
已知甲乙两数各是多少,求甲数比乙数多多少,或
乙数比甲数少多少。
< br>
c
、求比一个数少几的数的应用题:已知甲数是多少,
,乙数
比甲数少多少,求乙数是多
少。
3
、解答乘法应用题:
a
p>
、求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b
、求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另<
/p>
一个数是多少。
4
、解答除法应用题:
a
p>
、把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分
成几份的,求每一份是多少。
b
、求一
个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几
份。
c
、求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较
大数是较小
数的几倍。
d
、已知
一个数的几倍是多少,求这个数的应用题。
5
、常见的数量关系:
10
v1.0
可编辑可修改
总价
=
单价×数量;
路程
=
速度×时间;
工作总量
=
工作
时间×工效;
总产量
=
单产量×
数量
知识点讲解:典型应用题
典型应用题
:
具有独特的结构特征的和特定的解题规律的复合应用题,
通常
叫做典型应用题。
(
1
)平均
数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平
均数:
已知几个不相等的同类量和与之相对应的份数,
求平均每
份是多少。
数量
关系式:数量之和÷数量的个数
=
算术平均数。
加权平均数:已知两个以上若干份
的平均数,求总平均数是多少。
数量关系式
(部分平均数×权数)的总和÷(权数的和)
=
加权平均数。
p>
差额平均数:
是把各个大于或小于标准数的部分之和被总份数均分,
求的是标准数与各
数相差之和的平均数。
数
量关系式:
(大数-小数)÷
2=
小数
应得数
最大数与各数之差的和÷总份数
=
最大数
应给数
< br>最大数与个数之差的和÷总份数
=
最小数应得数。
例:
一辆汽车以每小时
100
千米
的速度从甲地开往乙地,
又以每小时
60
千米的速度
从乙地开往甲地。求这辆车的平均速度。
p>
11
v1.0
可编辑可修改
分析:
求
汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为
< br>“
1
”
,
< br>则汽车行驶的总路程为“
2
”
,从甲地到乙地的速度为
100
,所用的时间为
1
÷
< br>100
,汽
车从乙地到甲地速度为
60
千米
,所用的时间是
1
÷
60
,汽车共行的时间
为
1
÷
100
+1
÷
60,
汽车的平均速度为
2
÷(
1
÷
100
+1
÷
60
)
=75
(千米)
(
2
p>
)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,
其变化的规律是相同的,这种问题称之为归一问题。
根据求
“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球
痴单一量之后,
解题采用乘法还是除法,
归一问题可以分为正归
一问题,
反归一
问题。
一次归
一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。
”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。
”
p>
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
< br>
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关
键:从已知的一组对应量中用等分除法求出一份的数量(单一量)
,然后以它为
标准,根据题目的要求算出结果。
数量关系式:单一量×份数
=
总数量(正归一)
总数量
÷单一量
=
份数(反归一)
12
v1.0
可编辑可修改
例一个织布工人,在七月份织布
4774
米
,
照这样计算,织布
6930
米
,需要多少
天?
分析:
必须先求出平均每天织布多少米,
就是单一量。
693
0
÷
(
477
4
÷
31
)
=45
(天)
(
3
)归总
问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单
位数量的个数
)
,通过求总数量求得单位数量的个数(或单位数量)
。
特点:
两种相关联的量,
其中一种量变化,
另一种量也跟着变化,
不过变化的规律相反,
和反比例算法彼此相通。
数量关系式:
单位数量×单位个数÷
另一个单位数量
=
另一个单位数量
<
/p>
单位数量×单位
个数÷另一个单位数量
=
另一个单位数量。
例
修一条水渠,原计划每天修
800
米
,
6
天修完。实际
4
天修完,每天修了多少
米?
分析:
因为要求出每天修的长度,
就必须先求出水渠的长度。
所以也把这类应用题叫做
“归总问题”
。不同之
处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再
求单一量。
80 0
×
6
÷
4=1200
(米)
(
4
)
p>
和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题
叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个
小数的和)
,然后再求另
13
v1.0
可编辑可修改
一个数。
解题规律:
(和+差)÷
2 =
大数
大数-差
=
小数
(和-差)÷
2=
< br>小数
和-小数
=
大数
例
某加工厂甲班和乙班共有工人
94
人,
因工作需要临时从乙班调
46
人到甲班工作,
这时乙班比甲班人数少
12
人,求原来甲班和乙班各有多少人?
分析:
从乙班调
46
人到甲班,
对于总数没有变化,
现在把乙数转化成<
/p>
2
个乙班,
即
9
4
-
12
,由此得到现在的乙班是(
9
4
-
12
)÷
2=41
(人)
,乙班在调出
46
人之前
应该为
41+46=87
(人)
,甲班为
9 4
-
87=7
(人)
(
5
)
p>
和倍问题:
已知两个数的和及它们之间的倍数
关系,
求两个数各是多少的应用题,
叫做和倍问题。
解题关键:找准标准数(即
1
倍数)一般说来,题中说是“谁”的几倍,把谁就确定为
标准数。求出
倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与
标准数的倍
数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和
=
标准数
标准数×倍数
=
另一个数
例
:
p>
汽车运输场有大小货车
115
辆,
大货车比小货车的
5
倍多
7
辆,
运输场有大货车
和小汽车各有多少辆?
分析:
大货车比小货车的
5
倍还多
7
辆,这
7
辆也在总数
115
辆内,为了使总数与
(
5+1
)倍对应,总车辆数应(
115-7
)辆
。
14
v1.0
可编辑可修改
列式为(
115-7
)÷(
5+1
)
=18
(辆)
,
18
×
5+7=97
(辆)
(
6
)差倍
问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-
1
)
=
标准数
标准数×倍数
=
另一个数。
例
甲乙两根绳子,甲绳长
63
米
,乙绳长
29
米
,两根绳剪去同样的长度,
结果甲
所剩的长度是乙绳
长的
3
倍,甲乙两绳所剩长度各多少米
各减去多少米?
分析:两根绳子剪去相同的一段,
长度差没变,甲绳所剩的长度是乙绳的
3
倍,实比
乙绳多(
3-1
)倍,以乙绳的长度为标准数。列式(
63-29
)÷(
3-1
)
=17
(米)…
乙绳剩下的长度,
17
×
3=51
(米)
…甲绳剩下的长度,
29-17=12
(米)
…剪去的长度。
(
p>
7
)行程问题:关于走路、行车等问题,一般都是计算路程、时间、
速度,叫做行程
问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、
速度差等概念,了
解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程
=
速度和×时间。
同时相向而行:相遇时间
=
速度和×时
间
<
/p>
同时同向而行(速度慢的在前,快的在后)
:追及时间
=
路程速度差。
同时同地同向而行(速度慢的在后
,快的在前)
:路程
=
速度差×时间。
例
甲在乙的后面
28
千米
,
两人
同时同向而行,
甲每小时行
16
千米
,
乙每小时行
9
15
v1.0
可编辑可修改
千米
,甲几小时追上乙?
分析:
甲
每小时比乙多行
(
16-9
)
p>
千米,
也就是甲每小时可以追近乙
(
16-9
)
千米,
这是速度差。
已知甲在乙的后面
28
千米
(追击路程)
,
28
千米
里包含着几个(
16-9
)千米,
也就是追击所需要的时间。列式
2 8
÷
(
16-9
)
=4
(小时)
(
8
)流水
问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的
一种类型,它
也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。水速:水流动的速度。
顺水速度:船顺流航行的速度。逆水速度:船逆流航行的速度。
顺速<
/p>
=
船速+水速;逆速
=
< br>船速-水速
解题关键:
因为顺流速度是船速与水
速的和,
逆流速度是船速与水速的差,
所以流水问
题当作和差问题解答。
解题时要以水流为线索。
解题规律:船行速度
=
(顺水速度
+
逆流速度
)÷
2
;流水速度
=
< br>(顺流速度逆流速度)
÷
2
路程
=<
/p>
顺流速度×
顺流航行所需时间;路程<
/p>
=
逆流速度×逆流航行所需时间
例
一只轮船从甲地开往乙地顺水而行
,
每小时行
28
千米
,
到乙
地后,
又逆水
航行,
回到甲地。
逆水比顺水多行
2
小时,
已知水速每小时
4
千米。
求甲乙两地相距多少千米?
16
v1.0
可编辑可修改
分析:此题必须先知道顺水的速度
和顺水所需要的时间,或者逆水速度和逆水的时间。
已知顺水速度和水流
速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时
间不知道,只知道顺水比逆水少用
2
小时,
抓住这一点,就可以就能算出顺水从甲地到乙
地的所用的时间,这样就能算出甲乙两地的
路程。列式为
284
×
2=20
(千米)
2
0
×
2
=40
(千米)
40
÷(
4
×
2
)
=5
(小时)
28
×
5=140
(千米)
。
(
9
p>
)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的
应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果
出发,采用与
原题中相反的运算(逆运算)方法,逐步推导出
原数。
根据原
题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还
原问题时注意观察运算的顺序。
若需要先算加减法,
后算乘除法
时别忘记写括号。
例
某小学三年级四个班共有学生
168
人,
如果四班调
3
人到三班,
三班调
6
人到二
班,二班调
6
人到一班,
一班调
2
人到四班,
则四个班的人数相等,四个班原有学生多少
人?
分析:当四个班人数相等时,应为
168
÷
4
,以四班为例,它调给三班
3
人,又从
一班调入
2
人,所以四班原有的人数减去
3
再加上
2
等于平均数。四班原有人数列式为
168
÷
4-2+3=43
(人)
17
v1.0
可编辑可修改
一班原有人数列式为
168
÷
4-6+2=38
(人)
;
二班原有人数列式为
168
÷
4-6+6=42
(人)
三班原有人数列式为
168
÷
4-3+6=45
(人)
。
(
10<
/p>
)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵
树四种数量关系的应用题,叫做植树问题。
解题关键:
解答植树问题首先要判断地形,
分清是否封闭图形,
从而确定
是沿线段植树
还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树:
*
棵树<
/p>
=
段数
+1
棵
树
=
总路程÷株距
+1
;
*
株距
=
总路程÷
(棵树
-1
)
总路程
=
株距×<
/p>
(棵
树
-1
)<
/p>
沿周长植树:
棵树
=<
/p>
总路程÷株距
株距
=
总路
程÷棵树
总路程
=
株
距×棵树
例
沿公路一旁埋电线杆
301
根,每相邻的两根的间距是
50
米
。后来全部改装,只
埋了
201
根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要
把电线杆的根数减掉一。列式为
50
×(
301-1
)
÷(
201-1
)
=75
(米)
(
11
)<
/p>
盈亏问题:
是在等分除法的基础上发展起来的。
< br>
他的特点是把一定数量的物品,
平均分配给一定数量的
人,在两次分配中,一次有余,一次不足(或两次都有余,或两次都
不足)
,已知所余和不足的数量,求物品适量和参加分配人数的问题,叫盈亏问题。
18
v1.0
可编辑可修改
解题关键:
盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,
再求
两次分配中各次共分物品的差(也称总差额)
,用前一个差去除后一个差,
就得到分配者的
数,进而再求得物品数。
解题规
律:总差额÷每人差额
=
人数
总差额的求法可以分为以下四种情况:
第一次
多余,第二次不足,总差额
=
多余
+
不足
第一次正好,第二次多余或不足
<
/p>
,总差额
=
多余或不足
< br>
第一次多余,第二次也多余,总差额
=
大多余
-
小多余
第一次不足,第二次也不足,
总差额
=
大不足
-
小不足
例
p>
参加美术小组的同学,
每个人分的相同的支数的色笔,
如果小组
10
人,
则多
25
支,
如果小组有
12
人,色笔多余
5
支。求每人
分得几支共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有
12
人,比
10
人多
2
人,而色笔
多出了(
25-5
)
=20
支
,
2
个人多出
20
支,一个人分得
10
支。列式为(
25-5
)
÷(
12-10
)
=10
(支)
10
×
12+5=125
(支)
。
(
12<
/p>
)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年
龄问题”
。
19
v1.0
可编辑可修改
解题关键:年龄问题与和差、和倍、
差倍问题类似,主要特点是随着时间的变化,年
岁不断增长,但
大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的
问题,解题时
,要善于利用差不变的特点。
例
父亲
48
岁,儿子
21
岁。问几年前父亲的年龄是儿子的
4
倍?
分析:
父子的年龄差为
48-21=27
(岁)
。
由于几年
前父亲年龄是儿子的
4
倍,
可知父
子年龄的倍数差是(
4-1
)倍。
这样可以算出几年前父子的年龄,从而可以求出几年前父
亲的年龄是儿子的
4
倍。列式为:
21-
(
48-21
)÷(
4-1
)
=12
(年)
(
13
)鸡
兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类
应用题。通
常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:
解答鸡兔问题一般采用假设法,
假设全是一种动物
(如全是<
/p>
“鸡”
或全是
“兔”
,
然后根据出现的腿数差,可推算出某一种的头数。
解题规
律:
(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差
=
兔子只数
兔子只数
=
(总腿数
-2
×总头数)÷
2
如果假设全是兔子,可以有下面的式子:
鸡的只
数
=
(
4
×总
头数
-
总腿数)÷
2
兔的头
数
=
总头数
-
鸡的只数
例
鸡兔同笼共
50
个头,
170
条腿。问鸡兔各有多少只?
20
v1.0
可编辑可修改
兔子只数
(
170-2
×
50
)÷
2 =35
(只)
鸡的只数
50-35=15
(只)
知识点讲解:分数和百分数的应用
1
、分数加减法应用题:
分数加
减法的应用题与整数加减法的应用题的结构、
数量关系和解题方法基本相同,
所
不同的只是在已知数或未知数中含有分数。
2
、分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:
已知单位“
1
”的量和分率,求与分率所对应的实际数量。
p>
解题关键:准确判断单位“
1
”的量。找准要求
问题所对应的分率,然后根据一个数乘
分数的意义正确列式。
3
、分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:
已知一个数和另一个数,
求一个数是另一个数的几分之几或百分
之几。
“一个数”
是比较量,
“另一个
数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁
看作标准的数也就是把谁看作了“单位一”
,谁和单
位一的量作
比较,谁就作被除数。
21
v1.0
可编辑可修改
甲是乙
的几分之几(百分之几)
:
甲是比较量,乙是标准量,用甲除以
乙。
甲比乙多(或少)几分之几(百分之几)
:甲减乙比乙多(或少
几分之几)或(百分之
几)
。关系式(甲数减乙数)
/
乙数或(甲数减乙数)
/
甲数
。
已知一个数的几分之几(或百分之几
)
,
求这个数。
特征:已知一个实际数量和它相对
应的分率,求单位“
1
”的量。
解题关
键:
准确判断单位
“
1
”
的量把单位
“
1
”
的量看成
x
根据分数乘
法的意义列方程,
或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
4
、出勤率
发芽率
=
发芽种子数
/
试验种子数×
100%
小麦的出粉率
=
面粉的重量
/
小麦的重量×
100%
产品的
合格率
=
合格的产品数
/
产品总数×
100%
职工的出勤率
=
实际出勤人数
/
应出勤人数×
10
0%
5
、工程问题:
是分数
应用题的特例,
它与整数的工作问题有着密切的联系。
它是探讨
工作总量、
工作
效率和工作时间三个数量之间相互关系的一种应
用题。
22
v1.0
可编辑可修改
解题关键:
把工作总量看作单位
“
1
”
,工作效率就是工作时间的倒数,
然后根据题目的
具体情况,灵活运用公式。
数量关系式:
工作总
量
=
工作效率×工作时间
;工作效率
=
工作总量÷工作时间
工作时间
=
工作总量÷工作效率
;工作总量÷工作效率和
=
合作时间<
/p>
6
、纳税
纳税就是把根据国家各种税法的有
关规定,
按照一定的比率把集体或个人收入的一部分
缴纳给国家
。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额
……)的比率叫做税率。
利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
23