乘法公式教学设计教案
-
13.3
乘法公式
(
1
)
------
< br>两数和乘以这两数的差
(一)教学目标
< br>1
.经历探索平方差公式的过程,进一步发展符号感和推理能力。
2
.会推导平方差公式,并能运用公式进行简单计
算。
3
.认识平方差及其几何背景。
<
/p>
4
.在合作、交流和讨论中发掘知识,并体验学习的乐趣。
(二)
教学重点:
体会公式的发现和推导过程,
理解公式的本质,并会运用公式进行简单的
计算。
(三)教学难点:
从广泛意义上理解公式中的字母含义。
(四)教学过程
:
探
索
引
入
教学过程
设计意图
1.
如图,边长为
20
厘米的大正方形中有一个边长为
8
厘米的小正方形,请表示出图中阴影部分面积:
20
12
8
图(
1
)
<
/p>
1
.引导学生体会根据
特例进行归纳、<
/p>
建立猜
想、
用符号表示并给出
证明这一重要的数学
探索过程,
要让学生体
会符号运算对证明猜
想的作用,
同时引导学<
/p>
生体会
“数形结合”
思
< br>想的重要性。
2
、对公式的几
何解释
学生普遍感到困难,
教
师可以根
据两幅图的
变化过程制成动画或
操作演示。
图(
1
)的面积为:
< br>
20
20
< br>
8
8
20
2
8
2
336
图(
2
)的面积为:
(
20
8
< br>)(
20
8
< br>)
336
< br>(
20
8
)(
20
8
)
20
2
8
2
学
生探讨:
从上式中你能发现一些有趣的现象吗?再举
几个数试试
.
如果是一个数和一个字母,或
两个都
是字母呢?它们的情况又如何?
2.
计算下列各题
:
(1)(x+2)(x-2)
(2)
(1+3a)(1-3a)
(3)(x+5y)(x-5y)
3
、观察以上算式及其计算结果,你发现了什么规律?
能不能大
胆猜测得出一个一般性的结论?
问
题
研
讨
计算
(
a+b
)
(
a-b
)
此环节培养了学生的观
=
察归纳能力
=
探讨:
(
1
)
a+b
与
a-b
这两个式子有什么相同和不同?
(
2
)计算的结果有什么特点?<
/p>
知识归纳:平方差公式
平方差公式:
(a+b)(a-b) =
a
- b
公式特点:
(
1
)
公式左边是两个二项式相乘,并
且
这
两
个
二
项
式
中
有
一
项
p>
完
全
_________,
另
一
项
互
为
__________
。
p>
(
2
)公式右边是
_________
的平方减去
_________
的平
方。
2
2
知
识
归
纳
次环节可以给出几个变
式:
(-a+b)(-a-b)
=
a
-
b
(a-b)(-a-b)
=b
2
2
2
2
-
a
,
使学生明确
“左边一
项相同一项相反,右边是
相同项的平方减去相反
p>
项的平方”
。
例
题
讲
解
例
1.
计算下列各题:
运用平方差公式前要先
(1)
(5+6x)(5-6x)
(2)
分析是否适用,是否符合
(2x+5y)(2x-5y)
平方差公式的上述特征。
除了这几题
外,还可以根
分析:
要利用平方差公式解题,
< br>必须找到相同的项和互
据学生的实际情况设计
为相反数的
项,
结果为相同项的平方减互为相反
几道不能使用平方差公
p>
数的项的平方
.
式的题目。
例
2
.计算
(1)
(
-m
+
n
)
(-m
-
n
) (2)
(-2x
-
5y
)(
-2x
+ 5y )
(3) ( ab + 8 )( -ab
–
8 )
例
3
.计算
:
1998
×
2002
A
组
1.
计算
分层设计课堂练习有利
p>
1
于提高课堂效率,使不同
(1) ( 5
+ b )( 5
–
b ) (2) ( 2x +
)( 2x
层次的学生均有所提高,
2
有利于因材施教。
堂
上
练
习