2016高考文科数学全国卷1

巡山小妖精
643次浏览
2021年02月13日 06:57
最佳经验
本文由作者推荐

-

2021年2月13日发(作者:三门峡市实验中学)


绝密★启封并使用完毕前



2016

< p>
年普通高等学校招生全国统一考试



文科数学



第Ⅰ卷




.



选择题 :本大题共


12


小题,每小题


5


分,在每小题给出的四个选项中,只有一项是符合


题目要求的


.




1


)设集合


A



< p>
1


,


3


,


5


,


7



B



x


2



x



5< /p>


,则


A


I


B





A




1


,


3





B




3


,


5





C




5


,


7





D



1


,


7




(2)




1



2< /p>


i





a



i



的实部与虚部相等,其中


a


为实数,则


a





A


)-


3



B


)-


2



C



2



D



3




3


)为美化环 境,从红、黄、白、紫


4


种颜色的花中任选

2


种花种在一个花坛中,学


.


科< /p>


.


网余下的


2


种 花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是




A





2


5


1


1



B




C




D




3















6


3












2














5



c



2



cos


A




4


)△


ABC


的内角


A< /p>



B



C


的对边分别为


a



b



c.


已知


a



2


,则


b=



3



A



2











B



3















C



2
















D



3



1



5


)直线


l


经过椭圆的一个顶点和一个焦点,若椭圆中心到


l


的距离为其短轴长的


,则该椭圆的离心率

< br>4




1


1


2


3





A















B



















C
















D




3


2


3


4


π


1



6


)若将函数


y


=2sin (2

x


+


)


的图像向右平移

< p>
个周期后,所得图像对应的函数为



6

< p>
4


π


π


π


π



A


y


=2sin(2


x


+

< p>
)




B



y


=2sin(2


x


+


)




C



y


=2sin( 2


x



)




D



y


=2sin(2


x



)



4


3


4


3



7


)如图 ,学


.


科网某几何体的三视图是三个半径相等的圆及每个圆中两 条相互垂直的半径


.


若该几何体的


28 π


体积是


,则它的表面积是



3




A



17π












B



18π
















C



20π











D



28π





8


)若


a>b>0



0


,则



< br>A



log


a

< br>c



log


b

< br>c






B



log


c


a



log


c


b






C



a


c



b


c








D



c


a



c


b




9


)函数


y


=2


x

< p>
2


–e


|


x


|



[–2,2]


的图像大 致为





1 0


)执行右面的程序框图,如果输入的


x



0,


y



1


,


n


=1,


则输出


x


,


y


的值满足




A



y



2


x




B



y



3


x




C



y



4


x

< br>



D



y



5


x







11








< p>


ABCD



A


1


B


1


C


1


D


1


< br>顶



A



//


平面


CB


1

D


1


,



I


平面


ABCD


m




I


平面


ABB


1


A


1



n


,则


m



n


所成角的正弦值为



3


3


2

< br>1



B




C




D




2


3


2


3



A





12

< p>
)若函数


f


(


x


)



x


-


sin


2


x



a


sin


x







,






单调递增,则


a


的取值范 围是



1


3




A





1,1




B





1,









3




1









C





,



3


3


1




1


1

< br>




D





1,





3


< /p>











II




本卷包括必考题和选考题两部分


.



(


13


)


< p>
~



(


21


)


题为必考题,每个试题考生都必须作答


.



(


22


)

< p>


~



(


24


)


题为选考题,考生根据要求作答


.


二、填空题:本大题共


3


小题,每小题


5










13


)设向量


a




x


,


x



1



,


b




1


,


2

< br>


,



a



b


,则


x



_______________.




14


)已知


θ

是第四象限角,且


sin









3







,则


tan







________________.

< p>


4



5


4




AB

< br>


2


3


,则圆

< br>C


的面



15

< br>)设直线


y



x



2


a


与圆

< br>C



x



y



2


ay



2



0


相交 于


A



B


两点 ,若


2


2


积为


_______





16


)某高科技企业生产产品


A


和产品


B


需要甲、乙两种新型材料。生产一件产品

< p>
A


需要甲材料


1.5kg



乙材料


1kg


,用

< br>5


个工时;生产一件产品


B


需要 甲材料


0.5kg


,乙材料


0.3kg


,用


3


个工时,生产一件产品


A


的利润为


2100


元 ,生产一件产品


B


的利润为


900


元。学


.


科网该企业现有甲材料

< p>
150kg


,乙材料


90kg


则在


不超过


600


个工时的条件下,生产产品


A


、产品


B


的利润之和的最大值为


___________


元。





.


解答题:解答应写出文字说明,证明过程或演算步骤


.



17.


(本题满分


12


分)



已知< /p>



a


n



是公差为


3


的等差数列,数列



b


n


满足


b


1


=


1



b


2


=



a


n


b


n



1



b


n



1



nb


n



.




I

)求



a


n



的通项公式;




II


)求



b


n



的前


n

< br>项和


.














18.


( 本题满分


12


分)


< br>如图,在已知正三棱锥


P



AB C


的侧面是直角三角形,


PA



6


,顶点


P


在平面< /p>


ABC


内的正投影为点


D



1


3

-


-


-


-


-


-


-


-