初中圆的知识点总结
-
名师总结
精品知识点
中考数学关于圆的知识点总结
考点一、圆的相关概念
1
、圆的定义
在一个平面内,线段
OA
绕它固定的一个端点
O
旋转一周,另一个端点
A
随
之旋转所
形成的图形叫做圆,固定的端点
O
叫做圆心,线段
OA
叫做半径。
2
、圆的几何表示
< br>以点
O
为圆心的圆记作
“
⊙
O
”
,读作
“
圆
O”
考点二、弦、弧等与圆有关的定义
(
1
)弦
连接圆上任意两点的线段叫做弦。(如图中的
AB
)
(
2
< br>)直径
经过圆心的弦叫做直径。(如途中的
CD
)
直径等于半径的
2
倍。
(
3
)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(
4
)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号
“
⌒
”
表示,以
A
,
B
为端点的弧记作
“
”
,读作
“
圆弧
AB”
或
“
弧
AB”
。
大于半圆的弧
叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字
母表示)
考点三、垂径定理及其推论
(
重要
)
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论
1
:(
1
)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(
2
)弦的垂直平分线经过圆心
,并且平分弦所对的两条弧。
(
3<
/p>
)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
< br>
名师总结
精品知识点
*
推论
2
:圆的两条平行弦所夹的弧相等。
考点四、圆的对称性
1
、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2
、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理
1
、圆心角
顶点在圆心的角叫做圆心角。
2
、弦心距
从圆心到弦的距离叫做弦心距。
3<
/p>
、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相
等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、
两条弦或两条弦的弦心距中
有一组量相等,那么它们所对应的其余各组量都分别相等。<
/p>
考点六、圆周角定理及其推论
1
、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2
、圆周角定理(重要)
一条弧所对的圆周角等于它所对的圆心角的一半。
推论
1
:
同弧或等弧所对
的圆周角相等;
同圆或等圆中,
相等的圆周角所对的弧也相等。
推论
2(
△
)
:半圆(或直径)所对的圆周角是直角;
90°
的圆周角所对的弦是直径。
考点七、点和圆的位置关系
设⊙
O
的半径是
r<
/p>
,点
P
到圆心
O
的距离为
d
则有:
<
br>d <
br>在⊙ <
br>d=r <
br>在⊙ <
br>(
点
P
O
内;
点
P
O
上;
d>r
点
P
在⊙
O
外。
考点八、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(
1
)相交:直线和圆有两个公共点时,叫做直线和圆相交,
这时直线叫做圆的割线,
公共点叫做交点;
2
)相切:直线和圆有唯一公共点时,叫做直线和圆相
切,这时直线叫做圆的切线,
-