小数的意义和性质单元分析及教案
孕妇能吃螃蟹吗-
第四单元
小数的意义和性质单元分析及教案
内容分析
本单元的
内容主要有小数的意义(小数的意义、小数的读写)和
性质(小数的性质)
、小数的大小比较(小数的大小比较、小数点位
置移动引起小数大小变化)<
/p>
。
这些内容是在三年级
“分数的初步认识
”
和
“小数的初步认识”
的基础上教学
的,
是学生系统学习小数的开始。
通过这部分内容的教学,
p>
使学生进一步理解小数的意义和性质,
为今
后学习小数四则运算打好基础。
教学目标
:
1.
使学生理解小数的意义,认识小数的计数单位,会读、写小
数,会
比较小数的大小。
2.
p>
使学生掌握小数的性质和小数点位置移动引起小数大小变化的规
律。
教学重点:
理解小数的意义和性质
,
掌握小数点位置移动引起小数大
小变化的规律。
教学难点:
理解小数的意义和性质,
掌握小数点位置移动引起小数大
小变化的规
律。
p>
课题:
《小数的意义》
(第一课时)
总序号:
授课时间:
月
日
课题:小数的意义
教学内容:教科书第
32
页例
1
及做一做。
教学目标:
1
、在生活情境中了解小数的产生,体会数学与自然及人类社会的密切联系,了
解数学
的价值,增强对数学的理解和应用数学的信心。
2
、通过探究小数与分数、整数的内在联系,理解小数的意义。
<
/p>
3
、通过分析、对比、概括培养学生的思维能力,初步渗透对应思
想和分类思想。
教学重点、难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范
围扩展到三位小
数,使学生明确小数表示的是分母是
10
,
100
,
1000
,
??
的分数,并了解小数的
计数单位及单位间的进率,既是本课的重点,也是本课的难点。
教学设计
X|k B| 1 . |O |m
一、谈话引入:在日常生产和生活中,有些数量不一定都能用
整数表示,例如
商品的价钱,
就不一定都是整元钱,
在进行测量的时候,
往往不能正好得整数的
结果,
常常用小数表示.我们上学期已初步认识了小数,你能以元作单位,把下
面数先写成分数
,再写成小数吗?
(1)1
角
=(
)
元
(2)3
角
=(
)
元
(3)9
分
=( )
今天我们继续学习小数。
(
板书课题:小数的意
义
)
二、学习新课
师:
在日常生活中,
除了商品标价不够整元可以用小数外。
在量屋子的高度时,
它不够整米时,以米作单位也常用小数表示
。
1
、教学小数的意义。
(1)
教学一位小数
把刚才的题目稍作更改:
(出示米尺)
把一条长
1
米的线段平均分成
10
份,
这样
p>
1
份是
米,
用小数表示是
(
)
米。
板书:
1
分米
3
分米
7
分米
1/10
米
3/10
米
7/10
米
0.1
米
0.3
米
0.7
米
小结:
把
1
米平均分成
10
份,
这样的一份或几份的数可以用一位小数表示
,
写
在小数点右面的第一位,表示十分之几。
< br>
小练:如果
8
分米呢?以米为单位,怎么写成分数和小数?
9
分米
呢?
(
2
)教学两位小数
把刚才的题目再做更改:
(出示放大的
1
分米)
题目和上面哪里不一样?答案一
样吗?
把一条长
1
米的线
段平均分成
100
份,这样
1
份是
米,用小数表示
是(
)米。
板书:
1cm 4cm 8cm
1/100m 4/100m 8/100m
0.01m 0.04m 0.08m
小结:
把
1
米平均分成
100
份,
这样的一份或几份的数可以用两位
小数表示,
写
在小数点右面的第二位,表示百分之几。
小练:如果
28
厘米呢?以米为单位怎么写成分数和小数?
70
厘米呢?
(
3
)教学三位小数
<
/p>
把一条长
1
米的线段平均分成
1000
份,
这样
1
p>
份是
米,
用
小数表示是
(
)
米。
板书:
1
毫米
13
毫米
123
毫米
1/1000
米
13/1000
米
123/1000
米
0.001
米
0.013
米
0.123
米
< br>小结:把
1
米平均分成
1000
份,这样的一份或几份的数可以用两位小数表示,
写在小数点右
面的第三位,表示千分之几。
小
练:
256
毫米呢?
999
毫米呢?指名学生出题,全班化成分数和小数。
(4)
师:我们还可以照前面的方法继续分下去,可以得到四位、五位
......
小
数。
p>
启发学生根据前面
3
个问题的研究,
可以得出什么结论
? (
把
1
米平均分
成
10
份,
1
份或几份可以用一位小数表示,
分成
100
份,
1
份或几份可以用两位
小数表示,分成
1000
份,
1
份或几份可以用三位小数表示<
/p>
......)
2
、小结:像上面这
些分数也可以依照整数的写法来写,写在整数个位的右面,
用圆点隔开,用来表示十分之
几、百分之几、千分之几的数,叫做小数。
小数的计数单位是十分之一、
百分之一、
千分之一<
/p>
......
,
分别写作
0.1
,
0.01
,
0.001......
等。
(
阅读课本
)
3
、
P34
做一做
4
、强化概念.启发性提问:
p>
①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单
位是多少?
②百分之几的数用几位小数表示?两位小
数表示几分之几?两位小数的计数单
位是多少?
③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单
位是多少?
④每相邻两个单位间的进率是多少?
三、巩固练习:练习九
1
——
4
四、课堂总结。
反思:
学生的数学学习应当是一个生
动活泼、
生动和富有个性的过程,
要让学生
经历数学知识的形成过程。
基于这一理念,
在设计本课时,
我注重让学生经历探
究与发现的过程,
使他们在动手、
动脑、
动口中理解知识,
掌握方法,
学会思考,
获得积极的情感体验。
课题:
《
小数的读法和写法
》
(第一课时)
总序号:
授课时间:
月
日
课题:小数的读法和写法
教学内容:教科书第
34-35
页例
2-4
及做一做。
教学目标
:
会正确读、写小数,并进一步理解小数的意义。
教学重点:会正确读、写小数
教学难点:进一步理解小数的意义
一、复习引入
1
、
0.2
是
(
)
位小数,它表示
(
)分之
(
)
;
0.15
是
(
)
位小数,它表示
(
)
分之
(
)
;
0.008
是
(
)
位小数,它表示
(
)
分之
(
)
。
2
.
0.4
的计数单位是
(
)
,它有
(
)
个这样的计数单位;
0.07
的计数
单位是
(
)
,
它有
(
)
个这样的计数单位;
0.138
的计
数单位是
( )
,它有
(
)
个这样的计数单
位。
二、新知学习
1
.教学小数的数位顺序表。
p>
师:
前面我们看到的一些小数如
0.2
p>
、
0.15
等,
这
些小数的小数点左边的数都是
0
。其实小数点的左边也可以是其
它的数,如
1.8
米、
5.63
米、
12.378
等。这样
< br>的小数可以分成两部分,小数点的左边是整数部分,小数点的右边是小数部分,
小
数的整数部分和小数的小数部分中间被小数点隔开。
教师同时在黑板上写出小
数的数位顺序表的表头,如:
整数部分
小数点
小数部分
1 . 8
5 . 63
12 . 378
谁还记得整数的数位顺序
?
每个数位的计数单位是什么
?
相邻两个计数单位之间的进率是多少
?
师:
0.2
表示十分之二,
它表示
有两个十分之一,
十分之—是它的计数单位;
0.05
表示百分之五,它表示有五个百分之—,百分之一是它的计数单位;
0.
006
表示
千分之六,
它表示有六个干
分之一,
千分之一是它的计数单位。
那么小数的计数
单位有十分之—、百分之一、千分之一,还有万分之一等。
“这些小数的计数单位哪个最大?”
“多少个十分之一是整数
1?”
“多少个百分之一是十分之一?”
“多少个千分之一是百分之一?”
师:小数的这些计数单位十分之—、百分之—、千分之—、万分之—等,相邻两
个计数单
位之间的进率是
10
。
这和整数相邻两
个计数单位之间的进率是—样的,
都是
10
。因此一个小数的小数部分可以用小数点与整数部分隔开,排在整数部
分的右面,像
整数一样计数。
“10
个
十分之一是整数
1
,那么整数个位的右边应该是哪一位?”
p>
“把十分之一分成
10
等份,每一份是多少?”
“那么十分位的右边应该是哪一位?”
“把百分之一分成
10
等份,每一份是多少?”
“百分位的右边应该是哪一位呢?”
“十分之几的计数单位是多少?”
X|k B| 1
. |O |m
“百分之几的呢
?
千分之几的呢?”
教师边在黑板上列出小数部分的数位顺序边说明:
再往下还有万分位、
十万分位、
百万分位等,因为
小数位较多的不常用,我们在数位表上就用“......”表示。
前面我们讲过在整数
的右边,用小数点隔开,用来表示十分之几、百分之几、千
分之几、
??
的数,叫做小数。实际应用时常把整数和小数写在—起,这样的数也
叫小数。再边说边在黑板上写如
1.8
、
5.63
、
12.378
等也都是小数。小数点左边
的数叫整数部分,小数点右边的数叫小数部分。教师指
p>
12.378
提问:
“这个小数的整数部分中的每一位分别是什么位?”
“这个小数的小数部分的十分位是几
?
百分位是几
?
千分位呢?”
P36
做一做
1
2
.教学小数的读法。
教师在黑板上写出下面的小数:
0.58
、
3.5
、
41.47
。
提问
:
谁能读出黑板上的小数?”
学生读出前两个小数后,
教师说明:
这样的小数是我们过去学过的,
后面一个小
数的数值比较多,
它们的读法也是整数部分仍按照整数的读法来读,
小数点就读
点,小数部分通常就按顺序读出每一位上的数字就可以了。
3
.教学小数的写法。
师:写小数过去我们学过一些.下面我们大家一起来写一写。
三、巩固练习
教师报出教科书第
p>
36
页例
4
和“做
一做”第
2
题中的小数,让两个学生在黑板
上写,
其余的学生写在自己的练习本上。
写完后教师结合学
生出现的问题再讲解。
四、总结:
写小数的时候,整数部分仍按照整数的写法来写,如果整数部分是零就写
0
;小
数点写在个位的右下角,
要写成小圆点;
小数部分按顺序写出每一个数位上的数
字。<
/p>
反思:<
/p>
《小数的读写法》这节课使学生认识小数的计数单位和数位,知道小数每
< br>相邻两个计数单位间的进率,
理解小数数位顺序表,
学会
正确地读写小数。
教学
重难点是使学生认识小数的计数单位和数
位,
理解小数数位顺序表,
学会正确地
读写小数。
课题:
《
小数的性质》
(第一课时)
总序号:
授课时间:
月
日
课题:小数的性质
教学内容:教科书
38-39
页
.
教学目标:
1
、理解和掌握小数的性质。
p>
2
、学生学会利用小数的性质对小数进行化简和改写。
教学重点、难点
:
正确理解小数的末尾田上
0
或者去掉
0
,小数大小不变的性质。
教学设计:
一、复习引入
0.3
是(
)分之一
0.30
是(
)个百分之一
0.123
是(
)个千分之一
二、新课学习
师:在商店里,商品的标价经常写成这样:
这里的
2.50
元和
8.00
元各表示多少钱呢?
< br>2.50
元和
2.5
元,
8.00
元和
8
元有
什么关系呢?
1
.理解小数的性质。
(1)
例
1
比较
0.1
米、
0.10
米和
0.100
米的大小。
启发提问:
①
0.1
米是几个几分之一米
?
可以用哪个比较小的单位来表示
?(1
个十分之一
米,
1
分
米
)
②
0.10
米是几个几分之一米
?
可以用哪个比较小的单位来表示
?(10
个百分之一
米,
10
厘
米
)
③
0.100
米是几个几分之一米
?
可以用哪个比较小的单位来表示
?(100
个千分之
一米,是
l00
毫米
)
④观察
1
分
米、
10
厘米、
loo
毫米它们的长度怎样
?
你能得出什么结论
?(
它们的
长度是一样的
)
可以得出:
(0.1
p>
米=
0.10
米=
0.100
米。
(
板书
)
请同学们继续观察这
3
个小数。
①小数的末尾有什么变化
?
②小数的大小有什么变化
?
③你能得出什么结论
?
引导学生讨论
后归纳出:在小数的末尾添上“
0
”
,
小数的大小不变。
(2)
例
2
比较
0.30
和
0.3
的大小。
启发提问:
①
0.30
< br>表示几个几分之一
?
左图应平均分成多少份
?
用多少份来表示
?(30
个
1/100
,平均分成
100
份,用
30
份表示。
)
②
0.3
表示几个几分之一
?
右图应平均分成多少份
?
用多少份来表示
?(3
个
1/10
,平均分成
10
份,用
3
份来表示。
)
③两个图形所占面积大小怎样
?(
移动
投影片,学生易看出
0.30
=
0.3
)
④为什么这两个数相等
?
讨论后得知:
10
个
1/100
是
1
p>
个
1/10
,
30
个
1/100
是
3
个
1/10
所以这两
个数相等。
引导学生观察这个等式,从左往右看
,小数末尾有什么变化
?
小数大小有什么变
化
?
你能得出什么结论
?
启发学生归纳出:在小数的末尾去掉“
0
”
,小数的
大小不变。
(3)
引导学生归纳、概括。
p>
通过对例
1
、例
2
的研究,你能把上面的两个结论归纳成为一句话吗
?
启发学生概括出:
在小数的
末尾添上
“
0
”
或者去掉
“
0
”
,
小数的大小不变。
这叫做小数的性质。
< br>(
板书
)
理解小数性质的时
候,要注意什么
?(
要在小数的末尾添“
0
”或去“
0
”
,小数中
间的
0
不能去掉
)
。
2
.小数性质的应用。
我们学习了小数的性质,
遇到
小数末尾有
“
o
”
的时候,
可以去掉末尾的
“
0
p>
”
,
把小数化简。
教学例
3
:把
0.70
和
105.0900
化简。<
/p>
启发学生根据小数的性质可以得出:
0.70
=
0.7
105.0900
=
105.09
有时根据需要,
可以在小数的末尾添上
“
0
”
,
还可以在整数的个位有下角点
上小
数点,再添上“
0
”
,把整数改写成小数的形式。
例如
2.5
元可改写成
2.50
元
。
3
元改写成
3.00
元。
(2)
教学例
4
:
不改变数的大小,
把
0.2
,
4.08
< br>,
3
改写成小数部分是三位的小数。
0.2
=
0.200
4.08
=
4.080
3
=
3.000
三、巩固练习:
P39
做一做
四、总结:
在小数的末尾添上“
p>
0
”或者去掉“
0
”
,小数的大小不变。这叫做小数的性质。
五、作业练习十
2
、
< br>4
、
5
题。
板书设计
小数的性质
小数的末尾添上“
0
”或者去掉“
0
”
,小数的大小不变。这叫做小数的性质。
课题:
《小数的意义》
(第一课时)
总序号:
授课时间:
月
日
课题:小数的大小比较
教学内容:教
科书
40
页例
5.
做一做。
教学目标
1.
学生熟练掌握比较小数大小的方法和步骤,并能根据要求排列几个数
的大小。
2.
通过对小数大小的比
较,加深学生对小数意义的理解。
3.
在学习过程中,培养学生观察、比较和概括的能力。
教学重点:小数大小的比较方法和步骤。
教学难点:小数位数不同时比较大小容易与整数比较大小的方
法混淆。
教学设计:
一、复习引入:
832
○
799
6124
○
6214
1003
○
999
说说怎样比较整数的大小
?
师:
p>
我们已经掌握了整数比较大小的方法,
那么小数比较大小的方法也是
从高位
比起,一位一位地比较。今天就来研究小数比较大小的方法。
(
板书课题:小数
大小的比较
)
二、学习新课
1
、出示例
5
:姓
名
成绩
/m
小
明
3.05
小
红
2.84
小
莉
2.88
小
军
2.93
问:你能给他们排出名次吗?
明确:先比较整数部分
3>2,
p>
所以
3.05
是最大的。
< br>
整数部分相同,再比较小数部分:
< br>2.84
、
2.88
、
2.93
整数部分都相同,则比较
小数部分十分
位,
9>8,
所以
2.93>2.8<
/p>
()
十分位
相同,再比较百分位,
8>4,
所以
2
.88>2.84
最后比较结果:
3.05>2.93>2.88>2.84 <
/p>
2
、根据刚才的比较,你可以得出什么结论
?
引导学生概括:
比较两个小数的大小,
先看它们的整数部分,
整数部分大的那个
数就大;当
整数部分相同时,看十分位,十分位上的数大的那个数就大;整数部
分和十分位上的数都
相同,要看百分位上的数,百分位上数大的那个数就大。
3<
/p>
、练习:
P41
做一做
< br>
三、巩固练习:练习十
四、课堂总结
今天有什么收获?
五、作业
练习十
6
、
7
题。
板书设计
小数的大小比较
比较小数的大小,先
看整数部分,整数部分大的小数就大。如果整数部分相同,
就比较十分位,
十分位上大的小数就大。
十分位相同就看百分位,
直
到比较出大
小为止。
反思:
教
师要充分关注生成,并合理引导学生的生成,课堂教学才能
更加真实有效。在本节课中,
通过学生自己动手涂一涂,画一画,写
一写,说一说等教学活动来帮助和引导学生进行思
维的碰撞,这样,
通过学生自己的动手操作真正体会到了小数性质。并且应用到了实
p>
处。
课题:
《小
数点位置移动引起小数大小的变化》
(第一课时)
总序号:
授课时间:
月
日
课题:小数点位置移动引起小数大小的变化
< br>教学内容:教科书
43
页例
1.
教学目标:
1.
理解和掌握小数点位置移动引起小数大小的变化规律
2.
通过总结规律的过程,培养学生观察比较,概括的能力。
教学重点、难点
:
小
数点位置移动引起小数大小的变化规律,归纳“规律”的过程,既是教学
的重点,又是学
生学习的难点。
教学设计
一、复习导入:
板书:
35.67 3.567 356.7
3567
比较大小。
问:这四个
数有什么相同特点
?(
数字及排列顺序一样。
< br>)
有什么不同
?(
小数点位
p>
置不同,大小不同。
)
二、新知探究
从上题可见小数点的位置直接影响到小数的大小。那么,小数点的位置移动会
引起小
数大小怎样的变化呢
?
今天我们一起研究。
板书课题:小数点位置移动的规律。
1
、例
1
把
0.009
米的小数点向右移动一位、两位、三位
......
小数的大小有
什么变化?
(1)0.009
米等于多少毫米
?(
板书:
0.009
米=
9
毫米
)
(2)
师移动
0.009
米的小数点。
向右移动一位,变为多少毫米<
/p>
?
大小发生了什
么变化
< br>?(
板书:
0.09
米=
90
毫米,原数扩大
10
倍
)
向右移动两位,原数变为多少?是多少毫
米
?
大小有什么变化
?(
板书:
0.9
米=
900<
/p>
毫米,原数扩大
l00
倍
)
向右移动三位,原数又变成多少
?
是多少毫米
?
大小又发生了什么变化
?(
板书:
9
米=
9000
毫米,原数扩大
1000
倍
)
小数点可不可以向右移动四位、五位甚至更多位
?
师:所以我们要在移动位数
和扩大倍数的后边点上省略号。
(3)
从这一例子看,小数点向右移动会引起原数
怎样的变化
?
你能总结出规律来
吗
p>
?
引导学生总结出:
小数点向右移动一位,
原来的数就扩大
10<
/p>
倍;
小数点向右移
动两位,原来的数就扩
大
loo
倍;小数点向右移动三位,原来的数就扩大
1000
倍
......
2
.刚才是由上往下观察
(
画↓
p>
)
,如果我们由下往上观察
(
板书↑
)
,小数点相当
于往
哪边移动
?(
向左移动
)
,小数点向左移动了几位
?
原来的数会有怎样的变化
?
(
小组讨论
)
全班交流讨论结果,引导学生得出:
小数点向左移动一位,原来的数就缩小
10
倍;小数点向左移动两位,原来
的数就缩小
100
倍;
小数点向左移动三位,
原来的数就缩小
l000
倍
......(
板书
)