人教版初中数学公式大全85339.docx

玛丽莲梦兔
880次浏览
2021年02月19日 03:00
最佳经验
本文由作者推荐

-

2021年2月19日发(作者:贼鸥)


















精品文档



人教版初中数学公式大全



































1



过两点有且只有一条直线



2



两点之间线段最短



3



同角或等角的补角相等



4



同角或等角的余角相等



5



过一点有且只有一条直线和已知直线垂直



6



直线外一点与直线上各点连接的所有线段中,垂线段最短



7



平行公理



经过直线外一点,有且只有一条直线与这条直线平行



8



如果两条直线都和第三条直线平行,这两条直线也互相平行



9



同位角相等,两直线平行



10



内错角相等,两直线平行



11



同旁内角互补,两直线平行



12



两直线平行,同位角相等



13



两直线平行,内错角相等



14



两直线平行,同旁内角互补



15



定理



三角形两边的和大于第三边



16



推论



三角形两边的差小于第三边



17



三角形内角和定理



三角形三个内角的和等于


180


°



18



推论


1


直角三角形的两个锐角互余



19



推论


2


三角形的一个外角等于和它不相邻的两个内角的和



20



推论


3


三角形的一个外角大于任何一个和它不相邻的内角



21



全等三角形的对应边、对应角相等



22



边角边公理


(SAS)


有两边和它们的夹角对应相等的两个三角形全等



23



角边角公理


( ASA)


有两角和它们的夹边对应相等的两个三角形全等



24



推论


(AAS)


有两角和其中一角的对边对应相等的两个三角形全等



25



边边边公理


(SSS)


有三边对应相等的两个三角形全等



26



斜边、直角边公理


(HL)


有斜边和一条直角边对应相等的两个直角三角形全等



27



定理


1


在角的平分线上的点到这个角的两边的距离相等



28



定理


2


到一个角的两边的距离相同的点,在这个角的平分线上



29



角的平分线是到角的两边距离相等的所有点的集合



30



等腰三角形的性质定理


等腰三角形的两个底角相等



(



即等边对等角)



31



推论


1


等腰三角形顶角的平分线平分底边并且垂直于底边



32



等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合



33



推论


3


等边三角形的各角都相等,并且每一个角都等于



34



等腰三角形的判定定理



60


°



如果一个三角形有两个角相等,那么这两个角所对的边也相等









(等角对等边)



1


欢迎下载














精品文档



35


推论


1


三个角都相等的三角形是等边三角形



36


推论


2


有一个角等于



60


°的等腰三角形是等边三角形


< /p>


30


°那么它所对的直角边等于斜边的一半



37


在直角三角形中,如果一个锐角等于









38



直角三角形斜边上的中线等于斜边上的一半



39



定理



线段垂直平分线上的点和这条线段两个端点的距离相等



40



逆定理



和一条线段两个端点距离相等的点,在这条线段的垂直平分线上



41



线段的垂直平分线可看作和线段两端点距离相等的所有点的集合



42



定理


1


关于某条直线对称的两个图形是全等形



43



定理


2


如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线



44



定理


3


两个图形关于某直线对称, 如果它们的对应线段或延长线相交,那么交点在对称



轴上



45



逆定理



如果两个图形的对应点连线被同一条直线垂直平分,



那么这两个图形关于这条直线对





46



勾股定理



直角三角形两直角边



47



勾股定理的逆定理




形是直角三角形





a



b


的平方和、等于斜边


c


的平方,即


a^2+b^2=c^2



a



b



c


有关系


a^2+b^2=c^2



,那么这个三角









如果三角形的三边长






48



定理



四边形的内角和等于



49



四边形的外角和等于



360


°




360


°




50



多边形内角和定理




n


边形的内角的和等于(



51



推论



任意多边的外角和等于



52



平行四边形性质定理



53



平行四边形性质定理



360


°




n-2




×


180


°























1



平行四边形的对角相等



2



平行四边形的对边相等




54



推论



夹在两条平行线间的平行线段相等



55



平行四边形性质定理



56



平行四边形判定定理



57



平行四边形判定定理



58



平行四边形判定定理



59



平行四边形判定定理



3



平行四边形的对角线互相平分



1



两组对角分别相等的四边形是平行四边形



2



两组对边分别相等的四边形是平行四边形



3



对角线互相平分的四边形是平行四边形



4



一组对边平行相等的四边形是平行四边形





60



矩形性质定理


1



矩形的四个角都是直角



61



矩形性质定理


2



矩形的对角线相等



62



矩形判定定理


1



有三个角是直角的四边形是矩形



63



矩形判定定理


2



对角线相等的平行四边形是矩形



64



菱形性质定理


1



菱形的四条边都相等




65



菱形性质定理


2



菱形的对角线互相垂直,并且每一条对角线平分一组对角



66



菱形面积


=


对角线乘积的一半,即



S=



a


×


b




÷


2



67



菱形判定定理


1



四边都相等的四边形是菱形




68



菱形判定定理


2



对角线互相垂直的平行四边形是菱形



69



正方形性质定理



70


正方形性质定理



对角






1


正方形的四个角都是直角,四条边都相等



2


正方形的两条对角线相等,并且互相垂直平分,每条对角线 平分一组










2


欢迎下载











精品文档



71


定理


1


关于中心



称的两个



形是全等的




72


定理


2


关于中心



称的两个



形,



称点





称中心,并且被



称中心平分




73


逆定理



如果两个



形的







某一点,并且被







点平分,那么



两个



形关于



一点





74


等腰梯形性



定理



等腰梯形在同一底上的两个角相等







75



等腰梯形的两条





相等



76



等腰梯形判定定理



在同一底上的两个角相等的梯形是等腰梯形



77






相等的梯形是等腰梯形



78



平行



等分



段定理



如果一



平行



在一条直



上截得的



段相等,那么在










其他直



上截得的



段也相等



79





1



梯形一腰的中点与底平行的直



,必平分另一腰



80





2



三角形一



的中点与另一



平行的直



,必平分第三




81



三角形中位



定理



三角形的中位



平行于第三



,并且等于它的一半



82



梯形中位



定理



梯形的中位



平行于两底,并且等于两底和的一半





L=



a+b


)÷


2 S=L


×


h


83



(1)


比例的基本性



如果


a:b=c:d,


那么


ad=bc


如果


ad=bc,


那么


a:b=c:d




84 (2)



合比性






如果


a



b=c



d,


那么


(a


±


b)



b=(c


±


d)



d



如果


a



b=c



d=



=m



n(b+d+



+n



0),


那么



三条平行



截两条直



,所得的




85 (3)



等比性




(a+c+



+m)



(b+d+



+n)=a



b



86


平行





段成比例定理






段成比例



87





平行于三角形一



的直



截其他两



(或两



的延



),所得的



段成比







88


定理



如果一条直



截三角形的两



(或两



的延



)所得的



段成比例,那么






条直



平行于三角形的第三




89



平行于三角形的一



,并且和其他两



相交的直



,所截得的三角形的三



与原三角形三








比例



90



定理



平行于三角形一



的直



和其他两



(或两



的延



)相交,所构成的三角形与原三角形相




91



相似三角形判定定理


1


两角



相等,两三角形相似(


ASA




92



直角三角形被斜



上的高分成的两个直角三角形和原三角形相似



93



判定定理



2





成比例且



角相等,两三角形相似(



SAS




SSS






94



判定定理



3





成比例,两三角形相似(



95


定理



如果一个直角三角形的斜



和一条直角



与另一个直角三角形


的斜



和一条直角



成比例,那么



两个直角三角形相似



96




定理


1


相似三角形



高的比,





的比与



角平分



的比都等于相似比








3


欢迎下载













精品文档



97


性质定理



2


相似三角形周长的比等于相似比



98


性质定理



3


相似三角形面积的比等于相似比的平方



99



任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等



于它的余角的正弦值



100



任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等







于它的余角的正切值



101



圆是定点的距离等于定长的点的集合



102



圆的内部可以看作是圆心的距离小于半径的点的集合



103



圆的外部可以看作是圆心的距离大于半径的点的集合



104



同圆或等圆的半径相等



105



到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半



径的圆



106



和已知线段两个端点的距离相 等的点的轨迹,是着条线段的垂直


平分线



107



到已知角的两边距离相等的点的轨迹,是这个角的平分线



108



到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距







离相等的一条直线



109



定理



不在同一直线上的三点确定一个圆。



110



垂径定理



垂直于弦的直径平分这条弦并且平分弦所对的两条弧



111



推论


1


①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

< br>②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧


的直 径,垂直平分弦,并且平分弦所对的另一条弧



112



推论


2


圆的两条平行弦所夹的弧相等



113



圆是以圆心为对称中心的中心对称图形



114



定理



在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦






相等,所对的弦的弦心距相等



115



推论



在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两












弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等



116



定理



一条弧所对的圆周角等于它所对的圆心角的一半



117



推论


1


同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等



118


推论


2


半圆(或直径)所对的圆周角是直角;



对的弦是直径



119


推论


3


如果三角形一边上的中线等 于这边的一半,那么这个三角形是直角三角形



120


定理



圆的内接四边形的对角互补,并且任何一个外角都等于它



的内对角



121


①直线


L


和⊙


O


相交


d



r



②直线


L


和⊙


O


相切


d=r



③直线


L


和⊙


O


相离


d



r



90


°的圆周角所








122


切线的判定定理



123


切线的性质定理



经过半径的外端并且垂直于这条半径的直线是圆的切线



圆的切线垂直于经过切点的半径



4


欢迎下载





-


-


-


-


-


-


-


-