地质数据处理_插值方法
-
二维数据场的插值方法
1
.二维数据场描述及处理目的
数据场数据
{(xi,yi,zi),
i=1,
…
,n},
即某特征在二维
空间中的
n
个预测值列表:
x
坐标
y
坐标
观测数据
x
坐标
y
坐标
164648.47
84648
127
164658.97
84658
164658.97
84648.5
128
164649.47
84658.5
164649.47
84649
127
164649.95
84659
164649.95
84649.5
126
164650.45
84659.5
164650.45
84650
126
164650.95
84660
164650.95
84650.5
125
164651.45
84660.5
164651.45
84651
125
164652
84661
164652
84651.5
124
164652.48
84661.5
164652.48
84652
124
164652.97
84650.5
164652.48
84657.5
129
164653.47
84651
164652.97
84652.5
124
164653.97
84651.5
164653.47
84653
125
164654.47
84652
164653.97
84653.5
126
164654.95
84652.5
164654.47
84654
129
164658.97
84658
164654.95
84654.5
128
164649.47
84658.5
164655.45
84655
126
164656.98
84656.5
164655.95
84655.5
127
164657.48
84657
164656.44
84656
129
164648.47
84657.5
164654.3688
84653
128
处理目的
了解该数据场的空间分布情况
处理思路
网格化
绘制等值线图
观测数据
130
127
126
126
125
125
124
124
124
123
126
127
128
130
127
127
126
127
网格化方法:
二维数据插值
2
.空间内插方法
Surfer8.0
中常用的插值方法
Gridding Methods
Inverse
Distance to a Power(
距离倒数加权
)
Kriging
(克立格法)
Minimum
Curvature
(最小曲率法)
Modified Shepard's Method
(改进
Shepard
方法)
Natural Neighbor
(近邻法)
Nearest
Neighbor
(最近邻法)
Polynomial
Regression
(多项式回归法)
Radial Basis
Function
(径向基函数法)
Triangulation with Linear
Interpolation
(线性插值三角形法)
Moving
Average
(移动平均法)
Data Metrics
(数据度量方法)
Local
Polynomial
(局部多项式法)
Geostatistics Analyst Model in ArcGIS 9
反距离加权插值
确定性内插方法
全局多项式内插
局部多项式内插
内插方法
径向基函数方法
克立格内插方法
地统计内插方法
协同克立格内插
2.1
反距离加权插值
反距离加权插值(
Inverse Distance Wei
ghting
,简称
IDW
)
,反距离加权法是
最常用的空间内插方法之一。
它的基本原理是:
空间上离得越近的物体其性质越
相似,
反之亦然。
这种方法并没有考虑到区域化变量的空间变异性,
所以仅仅是
一种纯几何加权法。反距离加权插值的一般公式为:
Z
(
x
,
y
)
< br>
i
Z
(
x
i
,
y
i
)
i
p>
1
n
其中,
p>
Z(x
0
)
为未知
点
x
0
处的预测值,
< br>Z(x
i
)
为已知点
x
i
处的值,
n
为样点的数量,
为样点的权重值,其计算公式
为:
p
i
d
p>
/
d
i0
p
i0
i
1
n
式中
d
i0
为未知点与各已知点之间的距离,
p
是距离的幂。
样点在预测过程中受参
数
p
的影响,幂越高
,
内插的平滑效果越佳。
尽管反距离权重插值法很简单,易于实现,但它不能对内插的结果作精度
评
价,所得结果可能会出现很大的偏差,人为难以控制。
2.2
全局多项式插值(趋势分析法)
根据有限的样本数据拟合一个表面来进行内插,称之为全局多项式内插方
法。
一般多采用多项式来进行拟合,
求各样本点到该多
项式的垂直距离的和,
通
过最小二乘法来获得多项式的系数,<
/p>
这样所得的表面可使各样本点到表面之间距
离的平方和最小。
p>
Z
(
x
,
y
)
f
(
x
,
< br>y
)
如果表面平滑、无弯曲,
使用一次多项式拟合;有一处弯曲的表面则用二次
多项式进行拟合;
若有两处弯曲则需使用三次多项式,
依次类推。
全局多项式
内
插一般适用于表面变化平缓的研究区域,或者仅研究区域内全局性趋势的情况
[3]
。
2.3
局部多项式内插
局部多项式内插与全局多项式内插相对应,
是用多个多项式拟合表面的一种<
/p>
方法,
它更多地用来表现研究区域西部的变异情况。
其基本原理与全局多项式内
插相同。
The
Local
Polynomial
gridding method assigns
values to grid nodes by using a
weighted least squares fit with data
within the grid node's search ellipse.
2.4
径向基函数方法
径向基函数法属于人工神经网络方法,
该方法所拟合的表面都必须经过所有<
/p>
样本数据。
径向基函数以某个已知点为中心按一定距离变化的函数
,
因此在每个
数据点都会形成径向基函数,
即每个基函数的中心落在某一个数据点上。
径向基
函数适合
于非常平滑的表面,
要求样本数据量大,
如果数据点少,
则内插效果不
佳
[3]
。同时,径向基函数难以对误差进行估计,也是其缺点之一。
常用的径向基函数法,它们分别是:
薄盘样条函数(
thin-plate spline
)
:
B(h)
(h
2
R
2
)ln(h
2
p>
R
2
)
张力样条函数(
spline with
tension
)
:
B(h)
ln(
规则样条函
数(
completely regularized
spline
)
:
< br>R
h
)
K
0
(R
h)
2
C
E
2
(-1
)
n
r
2n
R
h
2
p>
R
h
2
B(h)
ln(
)
E
1
(
)
C
E
n!n
2
2
n
1
高次曲面样条函数(<
/p>
multiquadric spline
)
:
B(h)
h
< br>2
R
2
反高次曲面样条函数(
inverse
multiquadric spline
)
:
B(h)
1
h
R
2
2
< br>
各式子中
h
为表示由点
(x
,
y)
到第
p>
i
个数据点的距离,
R
参数是用户指定的
平滑因子,
K
0
为修正贝塞尔函数,
E
1
为指数积分函数,
C
E<
/p>
为
Euler
常数,其值
约为
0.577215
。<
/p>
Radial Basis
Function
interpolation is a diverse
group of data
interpolation methods. In
terms of the ability to fit your data and to
produce a smooth surface, the
Multiquadric
method is
considered by many
to be the best. All
of the
Radial Basis Function
methods are exact
interpolators, so
they attempt to honor your data. You can introduce
a
smoothing factor to all the methods
in an attempt to produce a smoother
surface.
Function Types
The basis
kernel functions are analogous to variograms in
Kriging
. The
basis kernel functions
define
the optimal
set
of weights to
apply to the
data points
when interpolating a grid node. The available
basis kernel
functions are listed in
the
Type
drop-down list in
the
Radial Basis
Function
Options
dialog.
Inverse
Multiquadric
Multilog
Multiquadratic
Natural Cubic Spline
Thin Plate Spline
where:
h is the anisotropically
rescaled, relative distance from the point to
the node
R
2
is
the smoothing factor specified by the user
Default
R
2
Value
The
default value for R
2
in the
Radial Basis Function gridding algorithm
is calculated as follows:
(length of diagonal of the data
extent)
2
/ (25 * number of
data points)
Specifying
Radial Basis Function Advanced Options
1. Click on
Grid |
Data
.
2. In
the
Open
dialog,
select
a
data
file
and
then
click
the
Open
button.
3. In
the
Grid
Data
dialog,
choose
Radial
Basis
Function
in
the
Gridding
Method
group.
4.
Click
the
Advanced
Options
button
to
display
the
Radial
Basis
Advanced
Options
dialog.
5. In
the
General
page,
you
can
specify
the
function
parameters
for
the
gridding operation.
The
Basis Function
list
specifies the basis kernel function to use during
gridding. This
defines
the
optimal
weights
applied
to
the
data
points
during
the
interpolation.
The
Basis
Function
is
analogous to the variogram in
Kriging
. Experience
indicates that the
Multiquadric
basis
function
works
quite
well
in
most
cases.
Successful
use
of
the
Thin
Plate
Spline
basis function is
also reported regularly in the technical
literature.
The
R
2
Parameter
is
a
shaping
or
smoothing
factor.
The
larger
the
R
2
Parameter
shaping
factor,
the rounder the
mountain tops and the smoother the contour lines.
There is no universally
accepted method
for computing an optimal value for this factor. A
reasonable trial value
for
R
2
Parameter
is between the
average sample spacing and one-half the average
sample
spacing.
Triangulation with Linear Interpolation
The
Triangulation with Linear
Interpolation
method in
Surfer
uses the
optimal Delaunay triangulation. The
algorithm creates triangles by
drawing
lines between data points. The original points are
connected in
such
a
way
that
no
triangle
edges
are
intersected
by
other
triangles.
The
result is a patchwork of triangular
faces over the extent of the grid.
This
method is an exact interpolator.
Each
triangle
defines
a
plane
over
the
grid
nodes
lying
within
the
triangle,
with the tilt and
elevation of the triangle determined by the three
original
data
points
defining
the
triangle.
All
grid
nodes
within
a
given
triangle
are
defined
by
the
triangular
surface.
Because
the
original
data
are used to define the triangles, the
data are honored very closely.
Triangulation with Linear
Interpolation
works best when your data
are
evenly
distributed
over
the
grid
area.
Data
sets
that
contain
sparse
areas
result in distinct triangular facets on
the map.
2.5
最小曲率法
Minimum Curvature
is widely
used in the earth sciences. The interpolated
surface
generated by
Minimum
Curvature
is analogous to a thin,
linearly elastic plate
passing through
each of the data values with a minimum amount of
bending.
The Minimum Curvature gridding
algorithm is solves the specified partial
differential equation using a
successive over-relaxation algorithm. The
interior is updated using a
(1988, p. 868). The only difference is
that the biharmonic equation must have
nine different
Minimum Curvature
generates
the smoothest possible surface while attempting to
honor your data as closely as possible.
Minimum Curvature
is not an
exact
interpolator, however. This means
that your data are not always honored
exactly.
Minimum Curvature
produces a
grid by repeatedly applying an
equation
over the
grid in an attempt to smooth the grid.
Each pass over the grid is counted as one
iteration. The grid node values are
recalculated until successive changes in the
values are less than the
Maximum Residuals
value, or
the maximum number of
iterations is
reached (
Maximum Iteration
field).
The
Maximum Residual
parameter
has the same units as the
data, and an
appropriate value is
approximately 10% of the data precision. If data
values are
measured to the nearest 1.0
units, the
Maximum Residual
value should be set at
0.1. The
iterations continue until the maximum grid node
correction for the
entire iteration is
less than the
Maximum
Residual
value. The default
Maximum
Residual
value is given by:
Default
Max Residual = 0.001 (Z
max
-
Z
min
)
The
Maximum
Iteration
parameter
should
be set at one to two times the
number
of grid nodes generated in the grid file. For
example, when
generating a 50 by 50
grid using
Minimum
Curvature
, the
Maximum
Iteration
value should be
set between 2,500 and 5,000.
The
Internal
Tension
and
Boundary Tension
,Qualitatively, the
Minimum
Curvature
gridding algorithm
is attempting to fit a piece of sheet metal
through all of the observations without
putting any creases or kinks in the
surface. Between the fixed observation
points, the sheet bows a bit. The
Internal Tension
is used to
control the amount of this bowing on the interior:
the higher the tension, the less the
bowing. For example, a high tension makes
areas between observations look like
facets of a gemstone. The
Boundary
Tension
controls the amount
of bowing on the edges. The range of values for
Internal Tension
and
Boundary Tension
are 0 to 1.
By default, the
Internal
Tension
and the
Boundary Tension
are set to
0.
the
Relaxation
Factor
,
The
Relaxation Factor is as described in Press et al.
(1988). In general, the
Relaxation
Factor should not be altered. The default value
(1.0) is a good
generic value. Roughly,
the higher the Relaxation Factor (closer to two)
the
faster the Minimum Curvature
algorithm converges, but the more likely it
will not converge at all. The lower the
Relaxation Factor (closer to zero) the
more likely the Minimum Curvature
algorithm will converge, but the
algorithm is slower. The optimal
Relaxation Factor is derived through trial
and error.
2.6
近邻法
The Natural Neighbor gridding method is
quite popular in some fields. What is
Natural Neighbor interpolation?
Consider a set of Thiessen
polygons (the dual of a Delaunay triangulation).
If a
new point (target) were added to
the data set, these Thiessen polygons would be
modified. In fact, some of the polygons
would shrink in size, while none would
increase in size. The area associated
with the target's Thiessen polygon that was
taken from an existing polygon is
called the
The
Natural
Neighbor
interpolation
algorithm
uses
a
weighted
average
of
the
neighboring observations, where the
weights are proportional to the
area.
p>
2.7
最近邻法
The Nearest Neighbor gridding method
assigns the value of the nearest point to
each grid node. This method is useful
when data are already evenly spaced, but
need to be converted to a Surfer grid
file. Alternatively, in cases where the data
are nearly on a grid with only a few
missing values, this method is effective for
filling in the holes in the data.
2.8
多项式回归方法
You can select the type of polynomial
regression to apply to your data from the
Surface
Definition
group.
As
you
select
the
different
types
of
polynomials,
a
generic polynomial form of the equation
is presented in the dialog, and the values
in
the
Parameters
group
change
to
reflect
the
selection.
The
available
choices
are:
Simple planar surfaceBi-
linear saddleQuadratic surfaceCubic surfaceUser