地质数据处理_插值方法

温柔似野鬼°
733次浏览
2021年02月21日 02:25
最佳经验
本文由作者推荐

-

2021年2月21日发(作者:洛浦简历)


二维数据场的插值方法



1


.二维数据场描述及处理目的




数据场数据



{(xi,yi,zi), i=1,



,n},


即某特征在二维 空间中的


n


个预测值列表:




x


坐标



y


坐标



观测数据



x


坐标



y


坐标



164648.47


84648


127


164658.97


84658


164658.97


84648.5


128


164649.47


84658.5


164649.47


84649


127


164649.95


84659


164649.95


84649.5


126


164650.45


84659.5


164650.45


84650


126


164650.95


84660


164650.95


84650.5


125


164651.45


84660.5


164651.45


84651


125


164652


84661


164652


84651.5


124


164652.48


84661.5


164652.48


84652


124


164652.97


84650.5


164652.48


84657.5


129


164653.47


84651


164652.97


84652.5


124


164653.97


84651.5


164653.47


84653


125


164654.47


84652


164653.97


84653.5


126


164654.95


84652.5


164654.47


84654


129


164658.97


84658


164654.95


84654.5


128


164649.47


84658.5


164655.45


84655


126


164656.98


84656.5


164655.95


84655.5


127


164657.48


84657


164656.44


84656


129


164648.47


84657.5


164654.3688


84653


128





处理目的



了解该数据场的空间分布情况



处理思路



网格化


绘制等值线图



观测数据



130


127


126


126


125


125


124


124


124


123


126


127


128


130


127


127


126


127



网格化方法:



二维数据插值




2


.空间内插方法



Surfer8.0


中常用的插值方法



Gridding Methods


Inverse Distance to a Power(


距离倒数加权


)


Kriging


(克立格法)



Minimum Curvature


(最小曲率法)



Modified Shepard's Method


(改进


Shepard


方法)



Natural Neighbor


(近邻法)



Nearest Neighbor


(最近邻法)



Polynomial Regression


(多项式回归法)



Radial Basis Function


(径向基函数法)



Triangulation with Linear Interpolation


(线性插值三角形法)



Moving Average


(移动平均法)



Data Metrics


(数据度量方法)



Local Polynomial


(局部多项式法)



Geostatistics Analyst Model in ArcGIS 9


反距离加权插值



确定性内插方法



全局多项式内插



局部多项式内插



内插方法



径向基函数方法



克立格内插方法



地统计内插方法



协同克立格内插





2.1


反距离加权插值



反距离加权插值(


Inverse Distance Wei ghting


,简称


IDW



,反距离加权法是


最常用的空间内插方法之一。


它的基本原理是:


空间上离得越近的物体其性质越


相似,


反之亦然。


这种方法并没有考虑到区域化变量的空间变异性,


所以仅仅是


一种纯几何加权法。反距离加权插值的一般公式为:



Z


(


x


,


y


)


< br>



i


Z


(


x


i


,


y


i


)



i



1


n


其中,


Z(x


0


)


为未知 点


x


0


处的预测值,

< br>Z(x


i


)


为已知点

< p>
x


i


处的值,


n


为样点的数量,



为样点的权重值,其计算公式 为:




p




i



d


/



d


i0



p


i0


i



1


n


式中

< p>
d


i0


为未知点与各已知点之间的距离,


p


是距离的幂。


样点在预测过程中受参



p


的影响,幂越高


,


内插的平滑效果越佳。



< p>
尽管反距离权重插值法很简单,易于实现,但它不能对内插的结果作精度


评 价,所得结果可能会出现很大的偏差,人为难以控制。



2.2


全局多项式插值(趋势分析法)



根据有限的样本数据拟合一个表面来进行内插,称之为全局多项式内插方


法。


一般多采用多项式来进行拟合,


求各样本点到该多 项式的垂直距离的和,



过最小二乘法来获得多项式的系数,< /p>


这样所得的表面可使各样本点到表面之间距


离的平方和最小。



Z


(


x


,


y


)



f


(


x


,

< br>y


)



如果表面平滑、无弯曲, 使用一次多项式拟合;有一处弯曲的表面则用二次


多项式进行拟合;

若有两处弯曲则需使用三次多项式,


依次类推。


全局多项式 内


插一般适用于表面变化平缓的研究区域,或者仅研究区域内全局性趋势的情况


[3]




2.3


局部多项式内插



局部多项式内插与全局多项式内插相对应,


是用多个多项式拟合表面的一种< /p>


方法,


它更多地用来表现研究区域西部的变异情况。


其基本原理与全局多项式内


插相同。



The


Local Polynomial


gridding method assigns values to grid nodes by using a


weighted least squares fit with data within the grid node's search ellipse.


2.4


径向基函数方法



径向基函数法属于人工神经网络方法,


该方法所拟合的表面都必须经过所有< /p>


样本数据。


径向基函数以某个已知点为中心按一定距离变化的函数 ,


因此在每个


数据点都会形成径向基函数,

即每个基函数的中心落在某一个数据点上。


径向基


函数适合 于非常平滑的表面,


要求样本数据量大,


如果数据点少,


则内插效果不



[3]


。同时,径向基函数难以对误差进行估计,也是其缺点之一。



常用的径向基函数法,它们分别是:



薄盘样条函数(


thin-plate spline




B(h)



(h


2



R


2


)ln(h


2



R


2


)



张力样条函数(


spline with tension





B(h)



ln(


规则样条函 数(


completely regularized spline




< br>R



h


)



K


0


(R



h)


2



C


E



2


(-1 )


n



r


2n


R



h


2


R



h


2


B(h)






ln(


)



E


1


(


)

< p>


C


E



n!n


2


2


n



1



高次曲面样条函数(< /p>


multiquadric spline



B(h)



h

< br>2



R


2



反高次曲面样条函数(


inverse multiquadric spline




B(h)



1


h



R


2


2

< br>


各式子中


h


为表示由点


(x



y)


到第


i


个数据点的距离,


R

参数是用户指定的


平滑因子,


K


0


为修正贝塞尔函数,


E


1



为指数积分函数,


C


E< /p>




Euler


常数,其值


约为


0.577215


。< /p>



Radial Basis Function


interpolation is a diverse group of data


interpolation methods. In terms of the ability to fit your data and to


produce a smooth surface, the


Multiquadric


method is considered by many


to be the best. All of the


Radial Basis Function


methods are exact


interpolators, so they attempt to honor your data. You can introduce a


smoothing factor to all the methods in an attempt to produce a smoother


surface.



Function Types


The basis kernel functions are analogous to variograms in


Kriging


. The


basis kernel functions


define


the optimal


set


of weights to


apply to the


data points when interpolating a grid node. The available basis kernel


functions are listed in the


Type


drop-down list in the


Radial Basis


Function Options


dialog.


Inverse Multiquadric



Multilog



Multiquadratic






Natural Cubic Spline



Thin Plate Spline



where:





h is the anisotropically rescaled, relative distance from the point to


the node


R


2



is the smoothing factor specified by the user



Default R


2


Value


The default value for R


2


in the Radial Basis Function gridding algorithm


is calculated as follows:



(length of diagonal of the data extent)


2


/ (25 * number of data points)



Specifying Radial Basis Function Advanced Options


1. Click on


Grid | Data


.


2. In


the


Open



dialog,


select


a


data


file


and


then


click


the


Open



button.


3. In


the


Grid


Data



dialog,


choose


Radial


Basis


Function


in


the


Gridding


Method


group.


4. Click


the


Advanced



Options



button


to


display


the


Radial


Basis


Advanced


Options


dialog.


5. In


the


General



page,


you


can


specify


the


function


parameters


for


the


gridding operation.




The


Basis Function


list specifies the basis kernel function to use during gridding. This


defines


the


optimal


weights


applied


to


the


data


points


during


the


interpolation.


The


Basis


Function


is analogous to the variogram in


Kriging


. Experience indicates that the


Multiquadric



basis


function


works


quite


well


in


most


cases.


Successful


use


of


the


Thin


Plate


Spline


basis function is also reported regularly in the technical literature.




The


R


2



Parameter



is


a


shaping


or


smoothing


factor.


The


larger


the


R


2



Parameter



shaping


factor,


the rounder the mountain tops and the smoother the contour lines. There is no universally


accepted method for computing an optimal value for this factor. A reasonable trial value


for


R


2



Parameter


is between the average sample spacing and one-half the average sample


spacing.


Triangulation with Linear Interpolation



The


Triangulation with Linear Interpolation


method in


Surfer


uses the


optimal Delaunay triangulation. The algorithm creates triangles by


drawing lines between data points. The original points are connected in


such


a


way


that


no


triangle


edges


are


intersected


by


other


triangles.


The


result is a patchwork of triangular faces over the extent of the grid.


This method is an exact interpolator.



Each


triangle


defines


a


plane


over


the


grid


nodes


lying


within


the


triangle,


with the tilt and elevation of the triangle determined by the three


original


data


points


defining


the


triangle.


All


grid


nodes


within


a


given


triangle


are


defined


by


the


triangular


surface.


Because


the


original


data


are used to define the triangles, the data are honored very closely.



Triangulation with Linear Interpolation


works best when your data are


evenly


distributed


over


the


grid


area.


Data


sets


that


contain


sparse


areas


result in distinct triangular facets on the map.




2.5


最小曲率法



Minimum Curvature


is widely used in the earth sciences. The interpolated surface


generated by


Minimum Curvature


is analogous to a thin, linearly elastic plate


passing through each of the data values with a minimum amount of bending.


The Minimum Curvature gridding algorithm is solves the specified partial


differential equation using a successive over-relaxation algorithm. The


interior is updated using a


(1988, p. 868). The only difference is that the biharmonic equation must have


nine different



Minimum Curvature


generates the smoothest possible surface while attempting to


honor your data as closely as possible.


Minimum Curvature


is not an exact


interpolator, however. This means that your data are not always honored


exactly.




Minimum Curvature


produces a grid by repeatedly applying an


equation


over the


grid in an attempt to smooth the grid. Each pass over the grid is counted as one


iteration. The grid node values are recalculated until successive changes in the


values are less than the


Maximum Residuals


value, or the maximum number of


iterations is reached (


Maximum Iteration


field).



The



Maximum Residual


parameter


has the same units as the data, and an


appropriate value is approximately 10% of the data precision. If data values are


measured to the nearest 1.0 units, the


Maximum Residual


value should be set at


0.1. The iterations continue until the maximum grid node correction for the


entire iteration is less than the


Maximum Residual


value. The default


Maximum


Residual


value is given by:



Default Max Residual = 0.001 (Z


max


- Z


min


)



The


Maximum Iteration


parameter


should be set at one to two times the


number of grid nodes generated in the grid file. For example, when


generating a 50 by 50 grid using


Minimum Curvature


, the


Maximum Iteration



value should be set between 2,500 and 5,000.



The


Internal Tension


and


Boundary Tension


,Qualitatively, the


Minimum


Curvature


gridding algorithm is attempting to fit a piece of sheet metal


through all of the observations without putting any creases or kinks in the


surface. Between the fixed observation points, the sheet bows a bit. The


Internal Tension


is used to control the amount of this bowing on the interior:


the higher the tension, the less the bowing. For example, a high tension makes


areas between observations look like facets of a gemstone. The


Boundary


Tension


controls the amount of bowing on the edges. The range of values for


Internal Tension


and


Boundary Tension


are 0 to 1. By default, the


Internal


Tension


and the


Boundary Tension


are set to 0.





the


Relaxation Factor


,



The Relaxation Factor is as described in Press et al. (1988). In general, the


Relaxation Factor should not be altered. The default value (1.0) is a good


generic value. Roughly, the higher the Relaxation Factor (closer to two) the


faster the Minimum Curvature algorithm converges, but the more likely it


will not converge at all. The lower the Relaxation Factor (closer to zero) the


more likely the Minimum Curvature algorithm will converge, but the


algorithm is slower. The optimal Relaxation Factor is derived through trial


and error.



2.6


近邻法



The Natural Neighbor gridding method is quite popular in some fields. What is


Natural Neighbor interpolation?



Consider a set of Thiessen polygons (the dual of a Delaunay triangulation). If a


new point (target) were added to the data set, these Thiessen polygons would be


modified. In fact, some of the polygons would shrink in size, while none would


increase in size. The area associated with the target's Thiessen polygon that was


taken from an existing polygon is called the



The


Natural


Neighbor


interpolation


algorithm


uses


a


weighted


average


of


the


neighboring observations, where the weights are proportional to the


area.


2.7


最近邻法



The Nearest Neighbor gridding method assigns the value of the nearest point to


each grid node. This method is useful when data are already evenly spaced, but


need to be converted to a Surfer grid file. Alternatively, in cases where the data


are nearly on a grid with only a few missing values, this method is effective for


filling in the holes in the data.



2.8


多项式回归方法



You can select the type of polynomial regression to apply to your data from the


Surface


Definition


group.


As


you


select


the


different


types


of


polynomials,


a


generic polynomial form of the equation is presented in the dialog, and the values


in


the


Parameters


group


change


to


reflect


the


selection.


The


available


choices


are:




Simple planar surfaceBi- linear saddleQuadratic surfaceCubic surfaceUser

-


-


-


-


-


-


-


-