数学专业英语(吴炯圻)

巡山小妖精
725次浏览
2021年02月23日 08:52
最佳经验
本文由作者推荐

-

2021年2月23日发(作者:青澳湾)


New Words & Expressions:


algebra



代数学












geometrical


几何的



algebraic



代数的






















identity


恒等式



arithmetic


算术


,


算术的











measure


测量,测度



axiom



公理














numerical



数值的


,


数字的



conception




概念,观点










operation


运算



constant



常数













postulate


公设



logical deduction


逻辑推理






proposition



命题




division


除,除法






















subtraction


减,减法





formula



公式



term


项,术语



trigonometry


三角学

















variable


变化的,变量













2.1


数学、方程与比例



Mathematics, Equation and Ratio


4


Mathematics


c


omes


from



man’s


social


practice,


for


example,


industrial


and


agricultural


production, commercial activities, military operations and scientific and technological researches.



1



A




What is mathematics


数学来源于人类的社会实践,比如工农业生产,商业活动,军事行动和科学技术研究。

< br>


And


in


turn,


mathematics


serves


the


practice


and


plays


a


great


role


in


all


fields.


No


modern


scientific


and


technological


branches


could


be


regularly


developed


without


the


application


of


mathematics.


反过来,


数学服务于实践,


并在各个领域中起着非常重要的作用。没有应用数学,


任何一个


现在的科技的分支都不能正常发展。



5


From


the


early


need


of


man


came


the


concepts


of



numbers


and


forms.


Then,


geometry


developed


out



of


problems


of


measuring


land


,


and


trigonometry


came


from


problems


of


surveying. To deal with some more complex practical problems, man established and then solved


equation with unknown numbers , thus algebra occurred.


< p>
很早的时候,


人类的需要产生了数和形的概念。


接 着,


测量土地问题形成了几何学,


测量问


题产生了三角学。


为了处理更复杂的实际问题,


人类建立和解 决了带未知数的方程,


从而产


生了代数学。


Before


17th


century,


man


confined


himself


to


the


elementary


mathematics,


i.e.


,


geometry,


trigonometry and algebra, in which only the constants are considered.


17


世纪前,人类局限于只考虑常数的初等数学,即几何学,三角学和代数学。



6


The


rapid


development


of


industry


in


17th


century


promoted


the


progress


of


economics


and


technology


and


required


dealing


with


variable


quantities.


The


leap


from


constants


to


variable


quantities


brought


about


two


new


branches


of


mathematics----analytic


geometry


and


calculus,


which belong to the higher mathematics.


17


世纪 工业的快速发展推动了经济技术的进步,从而遇到需要处理变量的问题。从常量到


变量的 跳跃产生了两个新的数学分支


-----


解析几何和微积分,他 们都属于高等数学。



Now there are many branches in higher mathematics, among which are mathematical analysis,


higher algebra, differential equations, function theory and so on.


现在高等数学里面有很多分支,其中有数学分析,高等代数,微分方程,函数论等。




7


Mathematicians


study


conceptions


and


propositions,


Axioms,


postulates,


definitions


and


theorems are all propositions. Notations are a special and powerful tool of mathematics and are


used to express conceptions and propositions very often.



数学家研究的是概念和命题,

< br>公理,


公设,


定义和定理都是命题。

符号是数学中一个特殊而


有用的工具,常用于表达概念和命题。


Formulas


,figures


and


charts


are


full


of


different


symbols.


Some


of


the


best


known


symbols


of


mathematics


are


the


Arabic


numerals


1,2,3,4,5,6,7,8,9,0


and


the


signs


of


addition


“+”,



subtraction “


-


” , multiplication “×”,



division “÷” and equality “=”.



公式,图形和图表都是不同的符号„„


..


8


The conclusions in mathematics are obtained mainly by logical deductions and computation. For


a


long


period


of


the


history


of


mathematics,


the


centric


place


of


mathematics


methods


was


occupied by the logical deductions.



数学结论主要由逻辑推理和计算得到 。


在数学发展历史的很长时间内,


逻辑推理一直占据着


数学方法的中心地位。



Now


,


since


electronic


computers


are


developed


promptly


and


used


widely,


the


role


of


computation becomes more and more important. In our times, computation is not only used to


deal with a lot of


information and


data, but also to carry out


some work that merely could be


done earlier by logical deductions, for example, the proof of most of geometrical theorems.



< p>
现在,


由于电子计算机的迅速发展和广泛使用,


计 算机的地位越来越重要。


现在计算机不仅


用于处理大量的信息和 数据,


还可以完成一些之前只能由逻辑推理来做的工作,


例如,


证明


大多数的几何定理。




9


回顾:



1.


如果没有运用数学,任何一个科学技术分支都不可能正常 的发展。



2.


符号在数学中起着非常重要的作用,它常用于表示概念和命题。




1



A




What is mathematics


10


An equation is a statement of the equality between two equal numbers or



number symbols.



1



B




Equation


等式是关于两个数或者数的符号相等的一种描述。



Equation are of two kinds---- identities and equations of condition.



An


arithmetic


or


an


algebraic


identity


is


an


equation.


In


such


an


equation


either


the


two


members are alike, or become alike on the performance of the indicated operation.


等式有两种-恒等式和条件等式。


算术或者代数恒等式都是等式。

< p>
这种等式的两端要么一样,


要么经过执行指定的运算后变成一样。



11


An identity involving letters is true for any set of numerical values of the letters in it.


含有字母的恒等式对其中字母的任一组数值都成立。



An


equation


which


is


true


only


for


certain


values


of


a


letter


in


it,


or


for


certain


sets


of


related


values


of


two


or


more


of


its


letters,


is


an


equation


of


condition,


or


simply


an


equation.


Thus


3x-5=7 is true for x=4 only; and 2x-y=10 is true for x=6 and y=2 and for many other pairs of values


for x and y.


一个等式若仅仅对其中一个字母的某些值成立,


或对其中两个或者多个字母的若干组相 关的


值成立,


则它是一个条件等式,


简 称方程。


因此


3x-5=7


仅当


x=4


时成立,



2x-y=0




x=6,y=2


时成立,且对


x, y


的其他许多对值也成立。



12


A root of an equation is any number or number symbol which satisfies the equation.



To obtain the root or roots of an equation is called solving an equation.


方程的根是满足方程的任意数或者数的符号。求方程根的过程被称为解方程。


There are various kinds of equations. They are linear equation, quadratic equation, etc.


方程有很多种,例如:线性方程,二次方程等。




13


To


solve


an


equation


means


to


find


the


value


of


the


unknown


term.


To


do


this


,


we


must,


of


course, change the terms about until the unknown term stands alone on one side of the equation,


thus making it equal to


something on the


other side. We then obtain the value of the unknown


and the answer to the question.



解方程意味着求未知项的值,

< p>
为了求未知项的值,


当然必须移项,


直到未知项单 独在方程的


一边,令其等于方程的另一边,从而求得未知项的值,解决了问题。



To


solve


the


equation,


therefore,


means


to


move


and


change


the


terms


about


without


making


the equation untrue, until only the unknown quantity is left on one side ,no matter which side.



因此解方程意味着进行一系列的移项和同解变形,


直到未知量被单独留在方程的一边,< /p>


无论


那一边。




14


Equations are of very great use. We can use equations in many mathematical problems. We may


notice


that


almost


every


problem


gives


us


one


or


more


statements


that


something


is


equal


to


something, this gives us equations, with which we may work if we need to.


< /p>


方程作用很大,


可以用方程解决很多数学问题。

< br>注意到几乎每一个问题都给出一个或多个关


于一个事情与另一个事情相等的陈述, 这就给出了方程,利用该方程,如果我们需要的话,


可以解方程。




New Words & Expressions:


numerical



数值的,数的



position




位置,状态



cube



n.


立方体





sphere



n.





cylinder n.


柱体





cone



圆锥



geometrical



几何的




triangle


三角形



surface



面,曲面



pyramid


菱形



plane


平面






solid



立体,立体的



line segment


直线段



ray


射线



curve


曲线,弯曲



straight line


直线





broken line


折线





equidistant


等距离的




2.2


几何与三角



Geometry and Trigonology


1


New Words & Expressions:


side










angle










diameter


直径



circle


圆周,圆



arc




major arc


优弧



right angle


直角



adjacent side



邻边



ra dius



radii


)半径



endpoint


端点



semicircle


半圆



minor arc


劣弧



acute angle


锐角




hypotenuse


斜边




chord






circumference


周长



2


Many leading institutions of higher learning have recognized that positive benefits can be gained


by all who study this branch of mathematics.



2



A




Why study geometry?


许多居于领导地位的学术机构承认,所有学习这个数学分支的人都将得到确实的受益。

< br>


This


is


evident


from


the


fact


that


they


require



study


of


geometry


as


a


prerequisite


to


matriculation in those schools.



许多学校把几何的学习作为入学考试的先决 条件,从这一点上可以证明。



3


Geometry had its origin long ago in the measurement by the Babylonians and Egyptians


of their


lands inundated by the floods of the Nile River.


< br>几何学起源于很久以前巴比伦人和埃及人测量他们被尼罗河洪水淹没的土地。



The


greek


word


geometry


is


derived


from


geo,


meaning


“earth”


and


metron,


meaning


“measure” .



希腊语几何来源于


geo


,意思是”土地“,和


metron


意思是” 测量“。



4


As


early


as


2000


B.C.


we


find


the


land


surveyors


of


these


people


re- establishing


vanishing


landmarks and boundaries by utilizing the truths of geometry .



公元前


2000


年之前,我们发现这些民族的土地测量者利用几何知识 重新确定消失了的土地


标志和边界。



One of the most important objectives derived from a study of geometry is making the student be



more critical in his listening, reading and thinking.



In studying geometry he is led away from the


practice of blind acceptance of statements and ideas and is taught to think clearly and critically


before forming conclusions.



几何的学习使学生在思考问题时更 周密、审慎,他们将不会盲目接受任何结论


.


5


A solid is a three-dimensional figure. Common examples of solids are cube, sphere, cylinder, cone


and pyramid.


2



B




Some geometrical terms


立体是一个三维图形,立体常见的例子是立方体,球体,柱体,圆锥和棱锥。


A cube


has


six faces which are smooth and


flat. These faces are called plane


surfaces or


simply


planes.


< /p>


立方体有


6


个面,都是光滑的和平的,这 些面被称为平面曲面或者简称为平面。



6


A


plane


surface


has


two


dimensions,


length


and


width.


The


surface


of


a


blackboard


or


of


a


tabletop is an example of a plane surface.


平面曲面是二维的,有长度和宽度,黑板和桌子上 面的面都是平面曲面的例子。



A


circle



is


a


closed


curve


lying


in


one


plane,


all


points


of


which


are


equidistant


from


a


fixed


point called the center.


平面上的闭曲线当其中每点到一个固定点的距 离均相当时叫做圆。固定点称为圆心。



7


A line segment drawn from the center of the circle to a point on the circle is a radius of the circle.


The circumference is the length of a circle.


经过圆心且其两个端点在圆周上的线段称为 这个园的直径,这条曲线的长度叫做周长。



One of the


most important applications of trigonometry


is the solution


of triangles. Let us


now


take up the solution to right triangles.



三角形最重要的应用之一是解三角形 ,现在我们来解直角三角形。



8


A triangle is composed of six parts three sides and three angles. To solve a triangle is to find the


parts not given.



一个三角形由


6


个部分组成,三条边和三只角。解一个三角形 就是要求出未知的部分。



A triangle may be solved if three parts (at least one of these is a side ) are given. A right triangle


has one angle, the right angle, always given. Thus a right triangle can be solved when two sides,


or one side and an acute angle, are given.


如果三角形的三个部分


(其中至少有一个为边)


为已知,


则此三角形就可以解出。


直角三角


形的一只角,即直角,总是已知的。因此,如果它的两边, 或一边和一锐角为已知,则此直


角三角形可解。




New Words & Expressions:


brace


大括号




























roster


名册



consequence


结论,推论








roster notation


枚举法



designate


标记,指定













rule out


排除,否决



diagram


图形,图解















subset


子集



distinct


互不相同的

















the underlying set


基础集



distinguish


区别,辨别











universal set


全集



divisible


可被除尽的
















validity


有效性



dummy


哑的,哑变量













visual


可视的



even integer



偶数




















visualize


可视化



irrelevant


无关紧要的













void set(empty set)


空集



2.3


集合论的基本概念



Basic Concepts of the Theory of Sets


1


The concept of a set


has been utilized so extensively throughout modern


mathematics that an


understanding


of


it


is


necessary


for


all


college


students.


Sets


are


a


means


by


which


mathematicians talk of collections of things in an abstract way.



3



A




Notations for denoting sets


集合论的概念已经被广泛使用,


遍及现代数学,


因此对大学生来说,


理解它的概念是必要的。


集合是数 学家们用抽象的方式来表述一些事物的集体的工具。



Sets usually are denoted by capital letters; elements are designated by lower-case letters.


集合通常用大写字母表示,元素用小写字母表示。



2


We use the special notation












to mean that “x is an element of S” or “x belongs to S”.


If x does not belong to S, we write













.



我们用专用记号来表示


x

< p>


S


的元素或者


x


属于


S


。如果


x


不属于


S


,我们记为。


When convenient, we shall designate sets by displaying the elements in braces; for example, the


set of positive even integers less than 10 is displayed as {2,4,6,8} whereas the


set of all positive


even integers is displayed as {2,4,6,…}, the three dots taking the place of “and so on.”



如果方便,我们可以用在大括号中列出元素的 方式来表示集合。例如,小于


10


的正偶数的

< br>集合表示为


{2,4,6,8}


,而所有正偶数的集合表 示为


{2,4,6,



},


三个圆点表示“等等”




3


The


dots


are


used


only


when


the


meaning


of


“and


so


on”


is


clear.


The


method


of


listing


the


members of a set within braces is sometimes referred to as the roster notation.



只有当省略的内容清楚时才能使用圆点。


在大括号中列出集合元素的方法有时被归结为枚举


法。



The first basic concept that relates one set to another is equality of sets:



联系一个集合与另一个集合的第一个基本概念是集合相等。



4


DEFINITION OF SET EQUALITY Two sets A and B are said to be equal (or identical) if they consist of


exactly the same elements, in which case we write A=B. If one of the


sets contains an element


not in the other, we say the sets unequal and we write A



B.


集合相等的定义如果两个集合


A



B


确切包含同样的元素


,


则称二者相等,此时记为


A=B



如 果一个集合包含了另一个集合以外的元素,则称二者不等,记为


A



B




5


EXAMPLE 1. According to this definition, the two sets {2,4,6,8} and {2,8,6,4} are equal since they


both consist of the four integers 2,4,6 and 8. Thus, when we use the roster notation to describe a


set, the order in which the elements appear is irrelevant.


根据这个定义,两个集合


{2,4, 6,8}



{2,8,6,4}


是相等 的,因为他们都包含了四个整数


2,4,6,8



因此,当我们用枚举法来描述集合的时候,元素出现的次序是无关紧要的。



6


EXAMPLE 2. The sets {2,4,6,8} and {2,2,4,4,6,8} are equal even though, in the second set, each of


the elements 2 and 4 is listed twice. Both sets contain the four elements 2,4,6,8 and no others;


therefore, the definition requires that we call these sets equal.




2.


集合


{2,4,6,8}



{2,2,4,4,6,8}


也是相等的,虽然在第二个集合中,


2



4


都出现两次。


两个集合都包含了四个元素


2,4,6,8

,没有其他元素,因此,依据定义这两个集合相等。



This example shows that we do not insist that the objects listed in the roster notation be distinct.


A similar example is the


set of letters in the word Mississippi, which


is equal to the set {M,i,s,p},


consisting of the four distinct letters M,i,s, and p.


这个例子表明我们 没有强调在枚举法中所列出的元素要互不相同。


一个相似的例子是,

在单



Mississippi


中 字母的集合等价于集合


{M,i,s,p},


其中包含了四个 互不相同的字母


M,i,s,



p.


7


From a given set S we may form new sets, called subsets


of S. For example, the set consisting of


those positive integers less than 10 which are divisible by 4 (the set {4,8}) is a subset of the set of


all even integers less than 10. In general, we have the following definition.


3



B




Subsets


一个给定的集合< /p>


S


可以产生新的集合,


这些集合叫做


S


的子集。


例如,


由可被


4


除尽的并且


小于


10


的正整数所组成的集合是小于


10


的所有偶数所组成集合的子集。


一般来说,


我们有< /p>


如下定义。



8


In all our applications of set theory, we have a fixed set S given in advance, and we are concerned


only with subsets of this given set. The underlying set S may vary from one application to another;


it will be referred to as the universal set of each particular discourse.



35


页第二段)



当我们应用集合论时,


总是事先给定一个固定的集合


S



而我们只关心这个给定集合的子集。


基础集可以随意改变,可以在每一段特定 的论述中表示全集。



9


It is possible for a set to contain no elements whatever. This set is called the empty set or the void


set, and will be denoted by the symbol





. We will consider





to be a subset of every set.



35


页 第三段)



一个集合中不包含任何元素,


这种情况是有可能的。


这个集合被叫做空集,


用符号表示。< /p>



集是任何集合的子集。



Some people find it helpful to think of a set as analogous to a container (such as a bag or a box)


containing certain objects, its elements. The empty set is then analogous to an empty container.


一些人认为这样的比喻是有益的,


集合类似于容器


(如背包和盒子)


装有某些东西 那样,



含它的元素。



10


To avoid logical


difficulties, we must distinguish


between the elements x and the set


{x} whose


only element is x. In particular, the empty set







is not the same as the set






. < /p>



35


页第


四段 )



为了避免遇到逻辑困难,我们必须区分元素


x


和集合


{x}


,集合



{x}


中的元素是


x


。特别要注


意的是空集和集合是不同的。


In fact, the empty set contains no elements, whereas the set












has


one element. Sets


consisting of exactly one element are sometimes called one-element sets.


事实上,


空集不含有任何元素,


而有一个元素。


由一个元素构成的集合有时被称为单元素集。



11


Diagrams often help us visualize relations between sets. For example, we may think of a set S as a


region in the plane and each of its elements as a point. Subsets of


S may then be thought of the


collections of points within S. For example, in Figure 2-3-1 the shaded portion is a subset of A and


also a subset of B.



35


页第五段)



图解有助于我们将集合之间的关系形象化。


例如,


可以把集合


S


看作平面内的一个区域,



中的每一个元素即是一个点。那么


S


的子集就是


S


内某些点的全体。例如,在图


2-3-1


中阴


影部分是


A


的子集,同时也是


B


的子集。



12


Visual aids of this type, called Venn diagrams, are useful for testing the validity of theorems in set


theory or for suggesting methods to prove them. Of course, the proofs themselves must rely only


on the definitions of the concepts and not on the diagrams.


这种图解方 法,


叫做文氏图,


在集合论中常用于检验定理的有效性或者为证 明定理提供一些


潜在的方法。当然证明本身必须依赖于概念的定义而不是图解。




New Words & Expressions:


conversely


反之












geometric interpretation


几何意义



correspond


对应




















induction


归纳法



deducible


可推导的















proof by induction


归纳证明



difference




























inductive set


归纳集



distinguished


著名的













inequality


不等式



entirely complete



完整的





integer


整数



Euclid


欧几里得

















interchangeably


可互相交换的



Euclidean


欧式的



















intuitive


直观的



the field axiom



域公理










irrational


无理的




2.4


整数、有理数与实数



Integers, Rational Numbers and Real Numbers


1




New Words & Expressions:


irrational number


无理数







rational


有理的



the order axiom


序公理











rational number


有理数



ordered


有序的

























reasoning


推理



product


































scale


尺度,刻度



quotient


































sum





2


There exist certain subsets of R which are distinguished because they have special properties not


shared by all real numbers. In



this section we shall discuss such


subsets, the integers and the


rational numbers.


4



A




Integers and rational numbers


有一些


R


的子集很著 名,


因为他们具有实数所不具备的特殊性质。


在本节我们将讨论 这样的


子集,整数集和有理数集。



3


To introduce the positive integers we begin with the number 1, whose existence is guaranteed by


Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. The numbers 1,2,3,…,


obtained


in this way by repeated addition of 1 are all positive, and they are called the positive


integers.


我们从数字


1< /p>


开始介绍正整数,公理


4


保证了


1


的存在性。


1+1



2


表示,


2+1



3


表示,


以此类推,由

< p>
1


重复累加的方式得到的数字


1,2,3


,„都是正的,它们被叫做正整数。



4


Strictly


speaking,


this


description


of


the


positive


integers


is


not


entirely


complete


because


we


have not explained in detail what we mean by the expressions “and so on”, or “repeated addition


of 1”.



严格地说,这种关于 正整数的描述是不完整的,因为我们没有详细解释“等等”或者“


1


重复累加”的含义。



5


Although


the


intuitive


meaning


of


expressions


may


seem


clear,


in


careful


treatment


of


the


real-number


system


it


is


necessary


to


give


a


more


precise


definition


of


the


positive


integers.


There


are


many


ways


to


do


this.


One


convenient


method


is


to


introduce


first


the


notion


of


an


inductive set.


虽然这些说法的直观意思似乎是清楚的,


但是在认真 处理实数系统时必须给出一个更准确的


关于正整数的定义。


有很 多种方式来给出这个定义,


一个简便的方法是先引进归纳集的概念。


6


DEFINITION OF


AN INDUCTIVE SET. A set


of real numbers is called an inductive set


if it has the


following two properties:


The number 1 is in the set.


For every x in the set, the number x+1 is also in the set.


For example, R is an inductive set. So is the set






. Now we shall define the positive integers to


be those real numbers which belong to every inductive set.



现在我们来定义正整数,就是属于每一个归纳集的实数。



7


Let P denote the set of all positive integers. Then P is itself an inductive set because (a) it contains


1,


and


(b)


it


contains


x+1


whenever


it


contains


x.


Since


the


members


of


P


belong


to


every


inductive set, we refer to P as the smallest inductive set.

< br>用


P


表示所有正整数的集合。那么


P


本身是一个归纳集,因为其中含


1


,满足


(a)


;只要包含


x

< p>
就包含


x+1,


满足


( b)


。由于


P


中的元素属于每一个归纳 集,因此


P


是最小的归纳集。



8


This property of P forms the logical basis for a type


of reasoning that mathematicians call proof


by induction, a detailed discussion of which is given in Part 4 of this introduction.



P


的这种性质形成了一种推理的逻辑 基础,


数学家称之为归纳证明,


在介绍的第四部分将给


出这种方法的详细论述。



9


The


negatives


of


the


positive


integers


are


called


the


negative


integers.


The


positive


integers,


together


with


the


negative


integers


and


0


(zero),


form


a


set


Z


which


we


call


simply


the


set


of


integers.


正整数的相反数被叫做负整数。正整数, 负整数和零构成了一个集合


Z


,简称为整数集。



10


In a thorough treatment of the real-number system, it would be


necessary at this stage to prove


certain theorems about integers. For example, the sum, difference, or product of two integers is


an


integer,


but


the


quotient


of


two


integers


need


not


to


ne


an


integer. However,


we


shall


not


enter into the details of such proofs.


在实数系统中,为了周密性,此时有必要证明一些整 数的定理。例如,两个整数的和、差和


积仍是整数,但是商不一定是整数。然而还不能给 出证明的细节。



11


Quotients of integers a/b (where b



0) are called rational numbers. The set of rational numbers,


denoted by


Q, contains Z as a subset. The reader should realize that all the field axioms and the


order


axioms


are


satisfied


by


Q.


For


this


reason,


we


say


that


the


set


of


rational


numbers


is


an


ordered field. Real numbers that are not in Q are called irrational.



整数


a



b


的商被叫做有理数,有理数集用


Q


表示,


Z



Q


的子集。读者应该认识到


Q



足所有的域公理和序公理。


因此说有理数集是一个有 序的域。


不是有理数的实数被称为无理


数。


12


The reader is undoubtedly familiar with the geometric interpretation of real numbers


by means


of points on a


straight line. A point


is selected to represent


0 and another, to the right of 0, to


represent 1, as illustrated in Figure 2-4-1. This choice determines the scale.


4



B




Geometric interpretation of real numbers as points on a line



毫无疑问,读者都熟悉通过在直线上描点的方式表示实数的几何意义。如图


2 -4-1


所示,选


择一个点表示


0


,在


0


右边的另一个点表示


1


。这种做法决定了刻度。



13


If


one


adopts


an


appropriate


set


of


axioms


for


Euclidean


geometry,


then


each


real


number


corresponds to exactly one point on this line and, conversely, each point on the line corresponds


to one and only one real number.


< br>如果采用欧式几何公理中一个恰当的集合,


那么每一个实数刚好对应直线上的一个 点,


反之,


直线上的每一个点也对应且只对应一个实数。



14


For this reason the line is often called the real line or the real axis, and it is customary to use the


words real number and point interchangeably. Thus we often speak of the point x rather than the


point corresponding to the real number.


为此直线通常被叫做实直线或者实轴,习惯 上使用“实数”这个单词,而不是“点”


。因此


我们经常说点< /p>


x


不是指与实数对应的那个点。



15


This device for representing real numbers geometrically is a very worthwhile aid that helps us to


discover and


understand better certain properties of real numbers. However, the reader should


realize that all properties of real numbers that are to be accepted as theorems must be deducible


from the axioms without any references to geometry.



这种几何化的表示实数的方法是非 常值得推崇的,


它有助于帮助我们发现和理解实数的某些


性质。


然而,


读者应该认识到,


拟被采用作为 定理的所有关于实数的性质都必须不借助于几


何就能从公理推出。



16


This


does


not


mean


that


one


should


not


make


use


of


geometry


in


studying


properties


of


real


numbers.


On


the


contrary,


the


geometry


often


suggests


the


method


of


proof


of


a


particular


theorem, and sometimes a geometric argument is more illuminating than a purely analytic proof


(one depending entirely on the axioms for the real numbers).



这并不意 味着研究实数的性质时不会应用到几何。


相反,


几何经常会为证 明一些定理提供思


路,有时几何讨论比纯分析式的证明更清楚。



17


In


this


book,


geometric


arguments


are


used


to


a


large


extent


to


help


motivate


or


clarity


a


particular


discuss.


Nevertheless,


the


proofs


of


all


the


important


theorems


are


presented


in


analytic form.


在本书中,

< br>几何在很大程度上被用于激发或者阐明一些特殊的讨论。


不过,

< br>所有重要定理的


证明必须以分析的形式给出。




3


New Words & Expressions:


polygonal


多边形的































circular regions


圆域



parabolic


抛物线的
































coordinate axis


坐标轴



the unit distance


单位长度





















the origin


坐标原点



horizontal



水平的


































coordinate system


坐标系



perpendicular


互相垂直的,垂线








vertical


竖直的



an ordered pair


一个有序对


















abscissa


横坐标



quadrant


象限








































ordinate


纵坐标



intersect



相交









































the theorem of Pythagoras


勾股


定理






2.5 basic concepts of Cartesian geometry


4


As mentioned earlier, one of the applications of the integral is the calculation of area. Ordinarily ,


we do not talk about area by itself ,instead, we talk about the area of something . This means


that we have certain objects (polygonal regions, circular regions, parabolic segments etc.) whose


areas we wish to measure. If we hope to arrive at a treatment of area that will enable us to deal


with


many


different


kinds


of


objects,


we


must


first


find


an


effective


way


to


describe


these


objects.



就像前面提到的 ,


积分的一个应用就是面积的计算,


通常我们不讨论面积本身,


相反,


是讨


论某事物的面积。


这意味着我们有些想测量的面积的对象


(多边形区域,

< br>圆域,


抛物线弓形


等)


,如果我 们希望获得面积的计算方法以便能够用它来处理各种不同类型的图形,我们就


必须首先找 出表述这些对象的有效方法。



5-A the coordinate system of Cartesian geometry


5


The most primitive way of doing this is by drawing figures, as was done by the ancient Greeks. A


much


better


way


was


suggested


by


Rene


Descartes,


who


introduced


the


subject


of


analytic


geometry


(also


known


as


Cartesian


geometry).



Descartes’


idea


was


to


re


present


geometric


points by numbers. The procedure for points in a plane is this






描述对象最基本的方法是画图,


就像古希腊人做的那样。

< p>
R


笛卡儿提出了一种比较好的方法,


并建立了解 析几何(也称为笛卡儿几何)这门学科。笛卡儿的思想就是用数来表示几何点,


在平面上 找点的过程如下:



5-A the coordinate system of Cartesian geometry


6


Two perpendicular reference lines (called coordinate axes) are chosen, one horizontal (called the


“x


-


axis”), the other vertical (the “y


-


axis”). Their point



of intersection denoted by O, is called the


origin.


On


the


x-axis


a


convenient


point


is


chosen


to


the


right


of


O


and


its


distance


from


O


is


called the unit distance. Vertical distances along the Y-axis are usually measured with the same


unit


distance


,although


sometimes


it


is


convenient


to


use


a


different


scale


on


the


y


-axis.


Now


each point in the plane (sometimes called the xy-plane)


is assigned a


pair of


numbers, called its


coordinates. These numbers tell us how to locate the points.



< p>
选两条互相垂直的参考线


(称为坐标轴)



一条水平


(称为


x


轴 )



另一条竖直


(称为


y


轴)



他们的交点记为


O,


称为原点。在


x

轴上,原点的右侧选择一个合适的点,该点与原点之间


的距离称为单位长度,


沿着


y


轴的垂直距离通常用同样的单位长度来 测量,


虽然有时候采用


不同的尺度比较方便。

< br>现在平面上的每一个点都分配了一对数,


称为坐标。


这些 数告诉我们


如何定义一个点。



5-A the coordinate system of Cartesian geometry


7


A geometric figure, such as a curve in the


plane , is a collection of


points satisfying one or more


special conditions. By translating these conditions into expressions,, involving the coordinates x


and y, we obtain one or


more equations which characterize the figure in question , for example,


consider


a


circle


of


radius


r


with


its


center


at


the


origin,


as


show


in


figure


2-5-2.


let


P


be


an


arbitrary point on this circle, and suppose P has coordinates (x, y).



一个几何图形是满足一个或多个特殊条件的点集,


比如平面上的曲线。< /p>


通过把这些条件转化


成含有坐标


x



y


的表达式,


我们 就得到了一个或多个能刻画该图形特征的方程。


例如,




2-5-2


所示的中心在原点,半径为


r


的圆,令


P


是原 上任意一点,假设


P


的坐标为


(x, y).




5-B Geometric figure


9


New Words & Expressions:


prime


素数

































displacement


位移



edge


棱,边































domain


定义域,区域



real variable


实变量


















schematic representation


图解表示



tabulation


作表,表


















mass


质量,许多,群众



absolute-value function


绝对值函数




2.6 function concept and function idea


10


Seldom


has


a


single


concept


played


so


important


a


role


in


mathematics


as


has


the


concept


of


function. It is desirable to know how the concept has developed.




在数学中,


很少有个概念象函数的概 念那样,


起那么重要的作用的。


因此,


需要知道这个概


念是如何发展起来的。



6-C The concept of function


11


This concept, like many others ,originates in physics. The physical quantities were the forerunners


of mathematical variables. And relation among them was called a


function relation in the later


16th century.




这个概念像许多其他概念一样,


起源 于物理学。


物理的量是数学的变量的先驱,


他们之间的


关系在


16


世纪后期称为函数关系。

< p>


6-C The concept of function


12


For example , the formula s=16t2 for the number of feet s a body falls in any number of seconds t


is


a


function


relation


between


s


and


t.


it


describes


the


way


s


varies


with


t.


the


study


of


such


relations led people in the 18th century to think of a function relation as nothing but a formula.




例如,代表一物体在若干秒


t


中下落若 干英尺


s


的公式


s=16t2


就是


s



t


之间的函数关系。


它描述了


s

< br>随


t


变化的公式,对这种关系的研究导致了

< p>
18


世纪的人们认为函数关系只不过


是一个公式罢 了。



6-C The concept of function


13


Only after the rise of modern analysis in the early 19th century could the concept of function be


extended. In the extended sense , a function may be defined as follows:



if a variable y depends


on another variable x in such a way that to each value of x corresponds a definite value of y, then


y is a function of x. this definition serves many a practical purpose even today.




只有在


19


世纪初期现代分析出现以后,函数的概念才得以扩大。在扩大的意义上讲 ,函数


可定义如下:


如果一变量


y


随着另一个变量


x


而变换,



x


的每一个值都和


y


的一定值相对


应,那么,


y

< br>就是


x


的函数。这个定义甚至在今天还适用于许多实际的 用途。



6-C The concept of function


14


Not specified by this definition is the manner of setting up the correspondence. It may be done


by


a


formula


as


the


18th


century


mathematics


presumed


but


it


can


equally


well


be


done


by


a


tabulation such as a statistical chart, or by some other form of description.



至于如何建立这种对应关系,


这个定义并未详细规定。


可以如


18


世纪的数学所假定的那样,


用公式来建立,但同样也可以用统计表那样的表格或用某种其他的描述方式来建立。



6-C The concept of function


15


A


typical


example


is


the


room


temperature,


which


obviously


is


a


function


of


time.


But


this


function admits


of


no formula representation, although it can be recorded


in a tabular form or


traced but graphically by an automatic device.



典型的例子是室温,


这显然是一个时 间的函数。


但是这个函数不能用公式来代表,


但可以用


表格的形式来记录或者用一种自动装置以图标形式来追踪。



6-C The concept of function


16


The modern definition of a function y of x is simply a mapping from a space X to another space Y


.


a mapping is defined when every point x of X has a definition image y, a point of Y


. the mapping


concept is close to intuition, and therefore desirable to serve as a basis of the function concept,


Moreover,


as


the


space


concept


is


incorporated


in


this


modern


definition,


its


generality


contributes



much



to the generality of the function concept.



现代给


x


的一个函数


y


所下的定义只是从一个空间


X


到另一个空间


Y


的映射。



X


空间的每


一个点


x


有一个确定的像点


y


,即


Y


空间的一点,那么,映射就确定 了。这个映射概念接近


于直观,


因此,


很可能作为函数概念的一个基础。


此外,


由于这个现代的定义中 体现了空间


的概念,所以,它的普遍性对函数概念的普遍性有很大的贡献。




New Words & Expressions:


alphabet


字母表











prime


素数,质数




displacement


位移









proportional


成比例的




domain


定义域














the real-valued function


实值函数



edge


棱,




















spring constant


弹性系数



















graph


图,


图形













limit



极限
































stretch


拉伸



















volume


体积,


容积,卷



2.6


函数的概念与函数思想



Function concept and function idea



1


New Words & Expressions(



)P59:


admit


准许





























mapping


映射



forerunner


先行者

















presume


假定



incorporate


并入,结合








trace


追踪





2


Various fields of human have to do with relationships that exist between one collection of objects


and another.



6-A Informal description of functions


各行各业的人们都必须处理一类事物与另一类事物之间存在的关系 。



Graphs, charts, curves, tables, formulas, and Gallup polls are familiar to everyone who reads the


newspapers.



几乎每个人都熟悉图形,图表,曲线,公式和盖洛普民意测验。



3


These


are


merely


devices


for


describing


special


relations


in


a


quantitative


fashion.


Mathematicians refer to certain types of these relations as functions.



这些只是以定量的方式描述特定关系 的方法。数学家将这些关系中的某些类型视作函数。



In


this


section,


we


give


an


informal


description


of


the


function


concept.


A


formal


definition


is


given in Section 3.


-


-


-


-


-


-


-


-