数学专业英语课后答案.doc 2

玛丽莲梦兔
960次浏览
2021年02月23日 09:04
最佳经验
本文由作者推荐

-

2021年2月23日发(作者:深圳市中考录取分数线)


2.1


数学、方程与比例





1


)数学 来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术


研究等活动。




Mathematics


comes


from


man’s


social


practice,


for


example,


industrial


and


agricultural


production, commercial activities, military operations and scientific and


technological researches.




2


)如果没有运用数学,任何一个科学技术分支都不可能正常地发展。




No


modern


scientific


and


technological


branches


could


be


regularly


developed


without the application of mathematics.




3


)符号 在数学中起着非常重要的作用,它常用于表示概念和命题。




Notations


are


a


special


and


powerful


tool


of


mathematics


and


are


used


to


express


conceptions and propositions very often.




4



17


世纪之前,人们局限于初等数学,即几何、三角和代数,那时只考虑常

< br>数。




Before


17th


century,


man


confined


himself


to


the


elementary


mathematics,


i.


e.


,


geometry, trigonometry and algebra, in which only the constants were considered.




5


)方程与算数的等式不同在于它含有可以参加运算的未知量 。




Equation


is


different


from


arithmetic


identity


in


that


it


contains


unknown


quantity


which can join operations.




6


)方程又称为条件等式,因为其中的未知量通常只允许取某些特定的值。



Equipment is called an equation of condition in that it is true only for certain values of


unknown quantities in it.




7


)方程很有用,可以用它来解决许多实际应用问题。



Equations


are


of


very


great


use.


We


can


use


equations


in


many


mathematical


problems.




8



解方程时要进行一系列移项和同解变形,


最后求出它的根,


即未知量的值。




To solve the equation means to move and change the terms about without making the


equation


untrue,


until


the


root


of


the


equation


is


obtained,


which


is


the


value


of


unknown term.




2.3


集合论的基本概念





1


)由小于



10


且能被



3


整除的正整数组成的集是整数集的子集。




The set consisting of those positive integers less than 10 which are divisible by 3 is a


subset of the set of all integers.




2


)如果方便,我们通过在括号中列举元素的办法来表示集。




When convenient, we shall designate sets by displaying the elements in braces.




3


)用符号



B





The relation



表示集的包含关系,也就是说,式子



A




B


表示



A


包含于





is referred to as set inclusion; A



B means that A is contained in B.





B


并不排除



B




A


的可能性。





4


)命题



A


The statement A



B does not rule out the possibility that B



A.




5


)基础 集可根据使用场合不同而改变。




The


underlying


set


may


vary


from


one


application


to


another


according


to


using


occasions.




6



为了避免逻辑上的困难,

< br>我们必须把元素



x


与仅含有元素



x

< br>的集


{x}


区别


开来。




To avoid logical difficulties, we must distinguish between the element x and the set {x}


whose only element is x.




7


)图解法有助于将集合之间的关系形象化。




Diagrams often help using visualize relationship between sets.


< /p>



8


)定理的证明仅仅依赖于概念和已知 的结论,而不依赖于图形。




The proofs of theorems rely only on the definitions of the concepts and known result,


not on the diagrams.




2.4


整数、有理数与实数



整数




(< /p>


1


)严格说,这样描述整数是不完整的,因为我们并没有说明



依此类推



或< /p>




复加



1”


的含义是什么。




Strictly


speaking,


this


description


of


the


positive


integers


is


not


entirely


complete


because we have not explained in detail what we mean by the express


ions “and so on”,


or “repeated addition of 1”.




2


)两个 整数的和、差或积是一个整数,但是两个整数的商未必是一个整数。




The sum, difference, or product of two integers is an integer, but the quotient of two


integers need not be an integer.




3




这种用几何来表示实数的办法对于帮助我们更好地发现与理解实数的性质

是非常有价值



的。




This device for representing real numbers geometrically is a very worthwhile aid that


helps us to discover and understand better certain properties of real numbers.



4


)几何经常为一些特定的定理提供证明思路(建议)



,而且,有时几何的论


证比纯分析的



(完全依赖于实数公理的)证明更清晰。




The


geometry


often


suggests


the


method


of


proof


of


a


particular


theorem,


and


sometimes


a


geometric


argument


is


more


illuminating


than


a


purely


analytic


proof


(one depending entirely on the axioms for the real numbers).




5


)一个 由实数组成的集若满足如下条件则称为开区间(


open interval







If a set consisting of real numbers satisfies the following conditions we call it an open


interval.




6


)实数



a



-a


的相反数,它们的绝对值相等,且当



a ≠ 0


时,其符号不同。




The real number a is the negative number of



a and their absolute values are equal.


When a ≠ 0, their notations are different.




7


)每个实数刚好对应着实轴上的一点, 反之,对实轴上的每一点,有且只有


一个实数与之



对应。




Each real number corresponds to exactly one point on this line and, conversely, each


point on the line corresponds to one and only one real number.




8


)在几何上,实数之间的次序关系可以在数轴上清楚地表示出 来。




In geometry, the ordering relation among the real numbers can be expressed clearly in


real axis.




2.5


笛卡儿几何学的基本概念





1


)计算图形的面积是积分的一种重要应用。




The calculation of figure area is the important application of the integral.




2


)在



x-


轴上



O


点右边选定一个适当的点,并把它到



O


点的距离称为单位


长度。




On the x-axis a convenient point is chosen to the right of O and its distance from O is


called the unit distance.




3


)对


< /p>


xy-


平面上的每一个点都指定了一个数对,称为它的坐标。




Each point in the xy-plane is assigned a pair of numbers, called its coordinates.




4< /p>


)选取两条互相垂直的直线,其中一条是水平的,另一条是竖立的,把它们


的交点记作



O




称为原点。




Two perpendicular reference lines are chosen, one horizontal, the other vertical. Their


point of intersection, denoted by O, is called the origin.




5


)当我们用一对数(


a, b


)来表示平面的点时,商定要把横坐标写在第一个位


置上。




When we write a pair of numbers such as (a, b) to represent a point, we agree that the


abscissa or x-coordinate, a, is written first.




6


)微积分与解析几何在它们的发展史上已 经互相融合在一起了。




Throughout


their


historical


development,


calculus


and


analytic


geometry


have


been


intimately intertwined.




7


)如果想拓展微积分的范围与应用,需要 进一步研究解析几何,而这种研究


需用到向量的



方法。




A deeper study of analytic geometry is needed to extend the scope and applications of


calculus, and this study will be carried out using vector methods.




8



今后我们要对三 维解析几何做详细研究,


但目前只限于考虑平面解析几何。




We shall discuss three- dimensional Cartesian geometry in more detail later on; for the


present we confine our attention to plane analytic geometry.




2.6


函数的概念与函数思想



< p>


1


)常用英语字母和希腊字母来表示函数。




Letters of the English and Greek alphabets are often used to denote functions.




2


)若



f


是一个给定的函数,


x


是定义域里的一个元素,那么记号



f (x)


用来表


示由



f


确定的



对应于



x


的值。




If f is a given function and if x is an object of its domain, the notation f(x) is used to


designate that object in the range which is associated to x by the function f.




3


)该射 线将两个坐标轴的夹角分成两个相等的角。




The ray makes equal angles with the coordinates axes.



< br>4


)可以用许多方式给出函数思想的图解说明。




The function idea may be illustrated schematically in many ways.




5


)容易 证明,绝对值函数满足三角不等式。




It is easy to proof that the absolute- value function satisfies the triangle inequality.




6


)对于 实数



x>0


,函数



g(x)


表示不超过



x


的素数的个数。




For a given real number x>0, the function g(x) is defined by the number of primes

-


-


-


-


-


-


-


-