一元二次方程练习题

玛丽莲梦兔
623次浏览
2021年02月24日 02:11
最佳经验
本文由作者推荐

-

2021年2月24日发(作者:何以笙箫默小说)


一元二次方程练习题



1


、已知关于


x


的方程


x


2



2


(

< br>k



1


)


x



k


2



0


有两个实数根


x

1



x


2



⑴、求


k


的取值范围;



⑵、若


x


1



x


2< /p>



x


1



x


2



1

< p>
,求


k


的值。










2.< /p>


、已知关于


x


的一元二次方程

< p>


有两个实数根


x


1



x


2





(1)


求 实数


m


的取值范围;


(2)



(


x


1



1


)(


x


2



1


)



7



,求


m


的值。











3.




A


(


x


1


< p>
y


1


)




B


(


x

2



y


2


)





比< /p>





y




x


1

< p>


x


2



3






2











x


2



x


1

< br>



2



x




1


) 求


y


1



y< /p>


2



的值及点


A



的坐标;




2


)若-


4



y




< p>
1


,直接写出


x


的取值范 围.









2


k



1



0



的两根是一个矩形的两邻边的长。




4.


(本小题


8


分)已知关于


x


的方程


x

< p>


(


k



1


)


x


4


2



1



k


为何值时,方程有两个实数根;




2


)当矩形的对角线长为

< p>


时,求


k


的值。












5


已知关 于


x


的一元二次方程


.




1


)求证 :方程总有两个不相等的实数根;





2


)当


Rt△ABC


的斜边长



,且两直角边和是方程的两根时,求△AB C


的周长和面积


.










6


如果一元二次方程


ax


< br>bx



c


0


的两根


x


1


x


2


均为正数,且满足


1



2


x


1




2

< br>(其中


x


1


< br>x


2




x


2


那么称这个方程有“邻近根”.





1


)判断 方程


x


2



(


3



1


)


x



3



0



是否有“邻近根”,并说明理由;





2


)已知关于


x


的一元二次方程


mx


2

< p>


(


m



1


)


x


1



0


有“邻近根”,求


m


的取值范围.










7


设关于


x


的一元二次方程


x

< br>2



2


px


1



0


有两个实数根,


一根大于


1



另一根小于


1



试求实 数


p


的范围.










8


已知方程


x


2


< /p>


mx



m



5



0


有两实数根





,方程


x


2



(


8


m



1


)


x



15

< p>
m



7



0


有两实数根



< p>


,求



2





的值。












9


已知关于


x


的方 程


(


4



k< /p>


)(


8



k


)


x


2



(


80



12


k


)


x



32



0


的解都是整数,求 整数


k


的值


.














10< /p>


若关于


x


的方程


x


4



16


x


3



(


81< /p>



2


a


)


x


2



(

< p>
16


a



142


)


x



a


2



21


a



168



0


的各根均为整数,求


a


的值并解此方程。












11


已知 关于


x


的一元二次方程


x


2


+mx+n=0


的一个解是


2,


另一个解是正数


,


而且也是方 程


(x+4)


2


-52=3x


的解


,


你能求出


m



n


的值吗


?








1


12< /p>


已知关于


x


的一元二次方程


x


2


-2kx+


k


2


-2=0.



2


(1)


求证


:


不论


k


为何值


,


方程总有两不相等实数根


.



(2)



x


1


,x


2


是方程的根


,



x


1


2


-2kx


1


+2x< /p>


1


x


2


=5,< /p>



k


的值


.











13


已知关于


x


的方程


x


2



2(


m



2)


x



m


2



4



0


两根的平方和比两根的积大


21


,求


m


的值









14


已知,当


x


为何值时,?









15


已知方程的一个解是

< p>
2


,余下的解是正数,而且也是方程的解,求


a< /p>



b


的值.









16


试说 明不论


k


为任何实数,关于


x


的方程一定有两个不相等实数根.









17


若方程的两个实数根的倒数和是


S


,求


S


的取 值范围.








18< /p>


若关于


x


的方程的两个根满足,求


m


的值.









19


若方程(


m



2



x


m2



5m+8


+(m+3)x+5=0


是一元二次方程,求


m


的值







1


20< /p>


已知关于


x


的一元二次方程


x


2


-2kx+


k


2


-2=0.


求证


:


不论


k


为何值


,


方程总有两不相等实数根


.



2







21


某商 店购进


600


个旅游纪念品,进价为每个


6


元,第一周以每个


10


元的价格售 出


200


个,第


二周若按每个


10


元的价格销售仍可售出


200


个,


商店为适当增加销量,


决定降价销售

< p>
(根据市场


调查,单价每降低


1

< br>元,可多售出


50


个,但售价不得低于进价)

< p>
,单价降低


x


元销售销售一周后,


商店对剩余旅游纪念品清仓处理,以每个


4


元的价格全 部售出,如果这批旅游纪念品共获利


1250


元,问第二周每个 旅游纪念品的销售价格为多少元?









22


如图,要利用一面墙(墙长为


25


米)建羊圈,用


100


米的 围栏围成总面积为


400


平方米的


三个 大小相同的矩形羊圈,



求羊圈的边长


AB



BC


各为多少米?













23


已知


R t



ABC


中,∠

C



90


°,斜边长为

< p>
5


,两直角边的长分别是关于


x

< br>的方程的两个根,求


m


的值.












24


某商场今年一月份销售额


100


万元,二月份销售额下降


10%


,进入


3


月份该商场采取措施,改

< p>
革营销策略,使日销售额大幅上升,四月份的销售额达到万元,求三、四月份平均每月销售额增


长的百分率.


-


-


-


-


-


-


-


-