平行四边形、菱形、矩形正方形测试题
-
平行四边形、菱形、矩形、正方形测试题
<
/p>
一、选择题
(
每题
3
分,共
30
分
)
。
1
.平行四边形
ABCD
中,∠
A=50
°,则∠
D=
(
)
A.
40
°
B.
50
°
C.
130
°
D.
不能确定
2
.下列条件中,能判定四边形是平行四边形的是(
)
A.
一组对边相等
B.
对角线互相平分
C.
一组对角相等
D.
对角线互相垂直
3
.
在平行四边形
ABCD
中,
EF
过对角线的交点
O
,
若
AB=4
,
BC=7
,
OE=3<
/p>
,
则四边形
EFCD
周长是(
)
A
.
14
B. 11
C.
10
D.
17
4
.菱形具有的性质而矩形不一定有的是
(
)
A
.
对
角相等且互补
B
.
对
角线互相平分
C
.
一
组对边平行另一组相等
D
.
对
角线互相垂直
5
.已知菱形的周长为
40cm
,
两条对角线的长度比为
3
:
4
,那么两条对角线
的长分别为(
)
A
.
p>
6cm
,
8cm
B.
3cm
,
4cm
C. 12cm
,
16cm
D.
24cm
,
32cm
6
.如图在矩形
ABCD
中,
对角线
AC
、
BD
相交于
点
O
,则以下说法错误的是
(
) <
/p>
1
A
.
AB=<
/p>
AD
2
图
5<
/p>
B
.
AC=BD
C
.
DAB
ABC
BCD
CDA
< br>90
D
.
AO=OC=BO=OD
7
.如图
5
连结正方
形各边上的中点,得到的新四边形是
(
)
A
.矩形
B.
正方形
C.
菱形
D.
平行四边形
8.
一矩形两对角线之间的夹角有一个是
60
0
,
且这角所对的边长
p>
5cm,
则对角线
长为
(
)
A. 5 cm
B. 10cm
C.
5
2
cm
D.
无法确定
9.
当矩形的对角线互相垂直时
,
矩形变成
( )
A.
菱形
B.
等腰梯形
C.
正方形
D.
无法确定
.
A
E
B
10.
如图所示,在
ABCD
中,
E
、
F
分别
AB
、
CD
的中点,连结
DE
、
EF
、
BF
,则图中平行四边形共
有(
)
p>
D
C
F
A
.
2
个
B
.
4
p>
个
C
.
6
个
D
.
8
p>
个
二、填空题(每题
3
分,共
24
分
< br>
)
11
.
□
ABCD
< br>中
,
AB
< br>:
BC=1
:
2
,
周长为
24cm,
则
AB=_____cm, AD=_____cm.
12
.已知:四边形
ABCD
中,
AB
=
CD
,要使四边形
ABCD
为平行四边形,需要增
加
__________
,
< br>(只需填一个你认为正确的条件即可)
你判断的理由是
:
_____________________________
。
13
.一个矩形的对角线长<
/p>
10cm
,一边长
6cm
,则其周长是
,面积
是
。
p>
14
.
已知菱形的两条对角线的长分别是<
/p>
6cm
和
8cm,
则其周长为
,
面积为
.
15
.正方形的对角线是
2
,那么
边长为
_____
,周长为
____<
/p>
,面积为
_______
。
16
.用两个全等的三角形,能拼成一个平行四边
形,这样的平行四边形的周长
取值最多有
________
p>
个。
17
.如图
,宽为
50cm
的矩形图案由
10
p>
个全等的小长方形拼
成,其中一个小长方形的面积为
_________
。
18
.如图,矩形
ABCD
中,
AB
=
3
,
BC
=
4
,
P
是边
AD
上的动点,
PE
⊥
AC
于点
p>
E
,
PF
⊥
BD
于点
F
,
则
PE
+
PF
的值为:
_________
。
三、解答题(共
46<
/p>
分)
19
.<
/p>
如图
9
平行四边形
ABCD
中,
BE
⊥
AC
于
E
,
< br>DF
⊥
AC
于
< br>F
,
求证:
BE=DF
(
提示:可以用
AAS
定理证明:△
CFD
≌△
AED)
(6
分
)
20
.
如图
8
:某菱形的对角线长分别是
6cm<
/p>
,
8cm
,求菱
1
D
2
C
E<
/p>
F
图
9
A
B