线性代数的发展历程
篮球学校-
由于研究关联着多个因素的量所引起的问题,则需要考察多元
函数。如果所研究的关
联性是线性的,
那么称这个问题为线性问
题。
历史上线性代数的第一个问题是关于解线性方
程组的问题,
而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发
展,
这些内容已成为我们线性代数教材的主要部分。
最初的线性方程组问题大都是来源于生
活实践,
正是实际问题
刺激了线性代数这一学科的诞生与发展。
另外,
近现代数学分析
与几
何学等数学分支的要求也促使了线性代数的进一步发展。
矩阵和行列式
行列式出现于线性方程
组的求解,
它最早是一种速记的表达式,
现在已经
是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明
的。
1693
年
4
月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,
并给出方程组的
系数行列式为零的条件。同时代的日本数学家关孝和在其著作
《解伏题元法》中也提出了
行列式的概念与算法。
1750
年,瑞士数学家克莱姆
(,1704-1752)
在其著作《线性代
数分析导引》中,对行列式的定义和展开法则给出了比
较完整、明确的阐述,并
给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学
家贝祖
(,1730-1783)
将确定行列式每一项符号的方法进行了系统化,利用系
数行列式概念指出了如何判断一个
齐次线性方程组有非零解。
< br>总之,
在很长一段时间内,
行列式只是作为解线性方程组
的一种工具使用,
并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以
研究。
在行列式的发
展史上,
第一个对行列式理论做出连贯的逻辑的阐述,
即把
p>
行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙
(monde,1735-1796)
。
范德蒙自幼在父亲的知道下学习音乐,
但对数
学有浓厚的兴
趣,
后来终于成为法兰西科学院院士。
特别地,
他给出了用二阶子
式和它们的余子式来展开行列式的法则。
就对行列式本身这一点来说,
他是这门
理论的奠基人。
p>
1772
年,
拉普拉斯在一篇论文中证
明了范德蒙提出的一些规则,
推广了他的展开行列式的方法。
继范德蒙之后,
在行列式
的理论方面,
又一位做出突出贡献的就是另一位
法国大数学家柯
西。
1815
年,
柯西在一篇论文
中给出了行列式的第一个系统的、
几乎是近代的处理。
其中主要
结果之一是行列式的乘法定理。
另外,
他第一个把
行列式的元素排成方阵,
采用双足标记法;
引进了行
列式特征方程的术语;
给出
了相似行列式概念;改进了拉普拉斯
的行列式展开定理并给出了一个证明等。
19
世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆
士·西尔维斯特
(ter,1814-1894)
。他
是一个活泼、敏感、兴奋、热
情,
甚至容易激动的人,
然而由于是犹太人的缘故,
他受到剑桥大学的不平等对
< br>待。
西尔维斯特用火一般的热情介绍他的学术思想,
他的
重要成就之一是改进了
从一个
次和一个
次的多项式中消去
x
的方法,他称
之为配析法,并给出形成
的行列式为零时这两个多项式方程有公共根充分必要条件这一结
果,
但没有给出
证明。
继柯西之后,在行列式理论方面最多产的人就是德
国数学家雅可比
(,1804-1851)
,他引进了函数行列式,即“雅可比行列式”,指出函
数行列式在多重积分的变
量替换中的作用,
给出了函数行列式的导数公式。
雅可
比的著名论文
《论行列式的形成和性质》
标志着
行列式系统理论的建成。
由于行
列式在数学分析、几何学、线性
方程组理论、二次型理论等多方面的应用,促使
行列式理论自身在
19
世纪也得到了很大发展。整个
19
世纪都有行列式的新结
果。
除了一般行列式的大量定理之外
,
还有许多有关特殊行列式的其他定理都相
继得到。
矩
阵
矩阵是数学中的一个重要的基本概念,
是代数学的一个主要研究
对象,
也
是数学研究和应用的一个重要工具。“矩阵”这个词是
由西尔维斯特首先使用
的,
他是为了将数字的矩形阵列区别于行
列式而发明了这个述语。
而实际上,
矩
阵这个课题在诞生之前就已经发展的很好了。
从行列式的大量工作中明显的表现
出来,
为了很多目的,
不管行列式的值是否与问
题有关,
方阵本身都可以研究和
使用,
矩阵的许多基本性质也是在行列式的发展中建立起来的。
在逻辑上,
矩阵
的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱
(,1821-1895)
一般被公认为是矩阵论的创立
者,
因为他首先把矩阵作为一个独立的数学概念提出来,
并首先发表
了关于这个
题目的一系列文章。
凯莱同研究线性变换下的不变量
相结合,
首先引进矩阵以简
化记号。
1858
年,
他发表了关于这一课题的第一篇论文
《矩阵论的研究报告》
,
系统地阐述了关于矩阵的
理论。
文中他定义了矩阵的相等、
矩阵的运算法则、
矩
阵的转置以及矩阵的逆等一系列基本概念,
指出
了矩阵加法的可交换性与可结合
性。另外,凯莱还给出了方阵的特征方程和特征根(特征
值)以及有关矩阵的一
些基本结果。
凯莱出生于一个古老而有才
能的英国家庭,
剑桥大学三一学院大学
毕业后留校讲授数学,<
/p>
三年后他转从律师职业,
工作卓有成效,
并利用业余时间
研究数学,发表了大量的数学论文。
1855
年,
埃米特
(e,1822-1901)
证明了别的数学家发现的一些
矩
阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来
,
克莱伯施
(h,1831-1872)
、布克海姆
(im)
等证明了对称矩
阵的特征根性质。泰伯
()
引入矩阵的迹的概念并给出了一些有关的结
论。
在矩阵论的发展史上,弗罗伯纽斯
(ius,1849-1917)
的贡献是
不可磨灭的。
p>
他讨论了最小多项式问题,
引进了矩阵的秩、
不变因子和初等因子、
正交矩阵、
矩阵的相似变换、
合同矩阵等概念,
以合乎逻辑的形式整理了不变因
子和初等因子的理论,
并讨论了正交矩阵与合同矩阵的一些重要性质。
1854
年,
约当研究了矩阵化为标准型的问题。
1892
年,梅茨勒
(r) <
/p>
引进了矩
阵的超越函数概念并将其写成矩阵的幂级数的形式。
p>
傅立叶、
西尔和庞加莱的著
作中还讨论了无
限阶矩阵问题,这主要是适用方程发展的需要而开始的。
矩阵本身所具有的性质依赖于元素的性质,
矩阵由最初作为一种
工具经过
两个多世纪的发展,
现在已成为独立的一门数学分支—
—矩阵论。
而矩阵论又可
分为矩阵方程论、
矩阵分解论和广义逆矩阵论等矩阵的现代理论。
矩阵及其理论
现已广泛地应用于现代科技的各个领域。
线性方程组
线性方程组的解法,早在中国古代的数学著作《九章算术
p>
方程》章中已
作了比较完整的论述。
其中所
述方法实质上相当于现代的对方程组的增广矩阵施
行初等行变换从而消去未知量的方法,
即高斯消元法。
在西方,
线性方程组的
研
究是在
17
世纪后期由莱布尼茨
开创的。
他曾研究含两个未知量的三个线性方程
组组成的方程组
。
麦克劳林在
18
世纪上半叶研究
了具有二、
三、
四个未知量的
线性方程
组,
得到了现在称为克莱姆法则的结果。
克莱姆不久也发表了这
个法则。
18
世纪下半叶,法国数学
家贝祖对线性方程组理论进行了一系列研究,证明了
元齐次线性方程组有非零解的条件是系数行列式等于零。
19
世纪,英国数学家史密斯
()
和道奇森
(n)
继续
研究线性方程组理论,
前者引进了方程组的增广矩阵和非增广矩阵的概念,<
/p>
后者
证明了
个未知数
个方程的方程组相容的充要
条件是系数矩阵和增广矩阵的秩
相同。这正是现代方程组理论中的重要结果之一。
大量的科学技术问题,
p>
最终往往归结为解线性方程组。
因此在线性方程组
< br>的数值解法得到发展的同时,
线性方程组解的结构等理论性工作也取得了令人满<
/p>
意的进展。现在,线性方程组的数值解法在计算数学中占有重要地位。
二次型
二次型也称为“二次形式”,数域
?上的
?元二次齐次多项式称为数
域
?上的
?元二次型。
二次型是我们线性代数教材的后继内容,
为了我们后面
的学习,
这里对于二次型的发展历史我们也作简单介绍。
二次型
的系统研究是从
18
世纪开始的,
它起源于对二次曲线和二次曲面的分类问题的讨论。将二次曲
线和二次曲面的方程变形,
选有主轴方向的轴作为坐标轴以简化方程的形状,
这
个问题是在
18
世纪引进的。
柯西在其著作中给出结论:
当方程是标准型时,
二
p>
次曲面用二次项的符号来进行分类。
然而,
那时并不太清楚,
在化简成标准型时,
为何总是得到同样数目的
正项和负项。
西尔维斯特回答了这个问题,
他给出了
个
变数的二次型的惯性定律,但没有证明。这个
定律后被雅可比重新发现和证明。
1801
年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定
等术语
。
二次型化简的进一
步研究涉及二次型或行列式的特征方程的概念。
特征方
程的概念
隐含地出现在欧拉的著作中,
拉格朗日在其关于线性微分方程组的著作
< br>中首先明确地给出了这个概念。
而三个变数的二次型的特征值的实性则是由阿歇<
/p>
特
(te)
、蒙日和泊松
(n,1781-1840)
建立的。
柯西在别人著作的基础上,
着手研究化简变数的二次型问题,
并证明了特
征方程在直角坐标系的任何变换下不变性。后来,他又证明了
p>
个变数的两个二
次型能用同一个线性变换
同时化成平方和。
1851
年,西尔维斯特在研究二次曲线和二次曲面的切触和相交时需要考
虑这种二次曲
线和二次曲面束的分类。
在他的分类方法中他引进了初等因子和不
变因子的概念,
但他没有证明“不变因子组成两个二次型的不变量的完全集”这
一结论。
1858
年,魏尔斯特拉斯对同时化两个二次型成平方和给出了一个一般的
方法
,并证明,如果二次型之一是正定的,那么即使某些特征根相等,这个化简
也是可能的。
魏尔斯特拉斯比较系统的完成了二次型的理论并将其推广到双线性
型。
从解方程到群论
求根问题是方程理论的一个中心课题。
16
世纪,
数学家们解决了三、
四
次方程的求根公式,
对于更高次方程的求根公式是否存在,
成为
当时的数学家们
探讨的又一个问题。
这个问题花费了不少数学家
们大量的时间和精力。
经历了屡
次失败,但总是摆脱不了困境。
到了
18
世纪下半叶,
拉格朗日认真总结分析了前人失败的经验,
深入研
究了高次方程的根与置换之间的关系,
提出了预解式概念,
并预
见到预解式和各
根在排列置换下的形式不变性有关。
但他最终没
能解决高次方程问题。
拉格朗日
的弟子鲁菲尼
< br> (Ruffini,1765-1862)
也做了许多努力,但都以失败告终
。高次
方程的根式解的讨论,在挪威杰出数学家阿贝尔那里取得了很大进展。阿贝尔
p>
(,1802-1829)
只活了
27
岁,他一生贫病交加,
但却留下了许多创造
性工作。
1824
年,
阿贝尔证明了次数大于四次的一般代数方程不可能有根式解。
< br>但问题仍没有彻底解决,
因为有些特殊方程可以用根式求解。
因此,
高于四次的
代数方程何时没有根式解,
是需要进一步解决的问题。
这一问题由法国数学家伽
罗瓦全面透彻地给予解决。
伽罗瓦
(,1811-1832)
仔细研究了拉格朗日和阿贝尔的著作,
建
立了方程的根的“容许
”置换,
提出了置换群的概念,
得到了代数方程用根式解
的充分必要条件是置换群的自同构群可解。
从这种意义上,
我们说伽罗瓦是群论
的创立者。伽罗瓦出身于巴黎附近一个富裕的家庭,幼
时受到良好的家庭教育,
只可惜,
这位天才的数学家英年早逝,
1832
年
5
月,
由于政治和爱情的纠葛,
在一次决斗中被打死,年
仅
21
岁。
置换群的概念和结论是最终产生抽象群的第一个主
要来源。
抽象群产生的
第二个主要来源则是戴德金
(nd,1831-1916)
和克罗内克
(ker,1823-1891)
的有限群及有限交换群的抽象定义以及凯莱
(,1821-1895)
关于有限抽象群的研究工作。另外,克莱因
(,1849-1925)
和庞加莱
(re,1854-1912)
给出了无限变换
群和其他类型
的无限群,
19
世纪
70
年代,李
(,1842-1899)
开始研
究连续变换群,
并建立了连续群的一般理论,
这些工作构成抽象群论的第三个主
要来源。
1882-1883
年,迪克
(k,1856-1934)
的论文把上述三个主要来
源的工作纳入抽象群的概念之中,建立了(抽象)群的定义
。到
19
世纪
80
年
代,数学家们终于成功地概括出抽象群论的公理体系。
< br>
20
世纪
80
年代,群的概念已经普遍地被认为是数学及其许多应用中最
基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及
其他许
多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、
代数群等,它们
还具有与群结构相联系的其他结构,如拓扑、解析流形、代数簇
等,并在结晶学、理论物
理、量子化学以及编码学、自动机理论等方面,都有重
要作用。
下面是古文鉴赏,不需要的朋友可
以下载后编辑删除!
!谢谢!
!
九歌·湘君
屈原
朗诵:路英
君不行兮夷犹,蹇谁留兮中洲。
美要眇兮宜修,沛吾乘兮桂舟。
令沅湘兮无波,使江水兮安流。
望夫君兮未来,吹参差兮谁思。
驾飞龙兮北征,邅吾道兮洞庭。
薜荔柏兮蕙绸,荪桡兮兰旌。
望涔阳兮极浦,横大江兮扬灵。
扬灵兮未极,女婵媛兮为余太息。
横流涕兮潺湲,隐思君兮陫侧。
桂棹兮兰枻,斫冰兮积雪。
采薜荔兮水中,搴芙蓉兮木末。
心不同兮媒劳,恩不甚兮轻绝。
石濑兮浅浅,飞龙兮翩翩。
交不忠兮怨长,期不信兮告余以不闲。
朝骋骛兮江皋,夕弭节兮北渚。
她含
着笑,切着冰屑悉索的萝卜,
她含着笑,用手掏着猪吃的麦糟,
她含着笑,扇着炖肉的炉子的火,
她含着笑,背了团箕到广场上去
晒好那些大豆和小麦,
大堰河,为了生活,
在她流尽了她的乳液之后,
她就用抱过我的两臂,劳动了。
大堰河,深爱着她的乳儿;
在年节里,为了他,忙着切那冬米的糖,
为了他,常悄悄地走到村边的她的家里去,
为了他,走到她的身边叫一声“妈”
,
大堰河,把他画的大红大绿的关云长
贴在灶边的墙上,
大堰河,会对她的邻居夸口赞美她的乳儿;
大堰河曾做了一个不能对人说的梦:
在梦里,她吃着她的乳儿的婚酒,
坐在辉煌的结彩的堂上,
而她的娇美的媳妇亲切的叫她“婆婆”
…………
大堰河,深爱她的乳儿!
大堰河,在她的梦没有做醒的时候已死了。
她死时,乳儿不在她的旁侧,
她死时,平时打骂她的丈夫也为她流泪,
五个儿子,个个哭得很悲,
她死时,轻轻地呼着她的乳儿的名字,
大堰河,已死了,
她死时,乳儿不在她的旁侧。
大堰河,含泪的去了!
同着四十几年的人世生活的凌侮,
同着数不尽的奴隶的凄苦,
同着四块钱的棺材和几束稻草,
同着几尺长方的埋棺材的土地,
同着一手把的纸钱的灰,
大堰河,她含泪的去了。