人教版小学数学概念

温柔似野鬼°
611次浏览
2021年02月20日 07:36
最佳经验
本文由作者推荐

-

2021年2月20日发(作者:嘉年华娱乐)



小学数学概念及公式大全








1


、加法 交换律:两数相加交换加数的位置,和不变。



2


、加法结合律:三个数相加,先把前两个数相加,或先把


后两个数相加,再同 第三个数相加,和不变。



3


、乘法交 换律:两数相乘,交换因数的位置,积不变。



4


、乘法结合律:三个数相乘,先把前两个数相乘,或先把


后两个数相乘,再和 第三个数相乘,它们的积不变。



5


、 乘法分配律:两个数的和同一个数相乘,可以把两个加


数分别同这个数相乘,

< p>
再把两个积相加,


结果不变。


如:



2+4



×


5



2


×

5+4


×


5


6

< br>、除法的性质:在除法里,被除数和除数同时扩大(或缩


小)相同的倍数,商不变 。


O


除以任何不是


O


的数都得


O




简便乘法:被乘数、乘数末尾有


O


的乘法,可以先把


O


前面


的相乘,零不参加运算,有几个 零都落下,添在积的末尾。



7


、么叫 等式?等号左边的数值与等号右边的数值相等的式


子叫做等式。



等式的基本性质:等式两边同时乘以(或除以)一个相同的


数, 等式仍然成立。



8


、什么叫方程式? 答:含有未知数的等式叫方程式。



9




什么叫 一元一次方程式?答:含有一个未知数,并且未


知数的次数是一次的等式叫做一元一次方 程式。学会一元一


次方程式的例法及计算。即例出代有χ的算式并计算。



10


、分数:把单位“


1< /p>


”平均分成若干份,表示这样的一份


或几分的数

< br>,


叫做分数。



11

< p>
、分数的加减法则:同分母的分数相加减,只把分子相加


减,


分母不变。


异分母的分数相加减,


先通分,


然后再加减。



12


、 分数大小的比较:同分母的分数相比较,分子大的大,


分子小的小。异分母的分数相比较 ,先通分然后再比较;若


分子相同,分母大的反而小。



13


、分数乘整数,用分数的分子和整数相乘的积作分子,分


母不变。



14


、分数 乘分数,用分子相乘的积作分子,分母相乘的积作


为分母。


< /p>


15


、分数除以整数(


0


除外),等于分数乘以这个整数的倒


数。


< p>
16


、真分数:分子比分母小的分数叫做真分数。



17


、假分数:分子比分母大或者分子和分母相等的分数叫做< /p>


假分数。假分数大于或等于


1




18


、带分数:把假分数写成整数和真分数的 形式,叫做带分


数。



19

< p>
、分数的基本性质:分数的分子和分母同时乘以或除以同


一个数(


0


除外),分数的大小不变。



20


、一个数除以分数,等于这个数乘以分数的倒数。



21


、甲数除以乙数(


0


除外),等于甲数乘以乙数的倒数。



分数的加、< /p>


减法则:


同分母的分数相加减,


只把分子 相加减,


分母不变。异分母的分数相加减,先通分,然后再加减。



分数的乘法则:用分子的积做分子,用分母的积做分母。



22


、什么叫比:两个数相除就叫做两个数的比。如:


2


÷


5



3:6



1/3


,比的前项 和后项同时乘以或除以一个相同的数



0


除外),比值不变。



23


、什么叫 比例:表示两个比相等的式子叫做比例。如


3:6


< p>
9:18


24


、比例的基本性质:在比例里,两 外项之积等于两内项之


积。



25



解比例:


求比例中的未知项,

< p>
叫做解比例。



3:


χ=


9:18


26


、正比例:两种相关联 的量,一种量变化,另一种量也随


着化,如果这两种量中相对应的的比值(也就是商


k


)一定,


这两种量就叫做成正比例的量, 它们的关系就叫做正比例关


系。如:


y/x=k( k


一定


)



kx=y < /p>


27


、反比例:两种相关联的量,一种量变化,另一种量也随


着变化,如果这两种量中相对应的两个数的积一定,这两种


量就叫做 成反比例的量,它们的关系就叫做反比例关系。



如:


x


×


y = k( k


一定


)



k / x = y


28


、百分数:表示一个数是另一个数的百分 之几的数,叫做


百分数。百分数也叫做百分率或百分比。



29


、把小数化成百分数,只要把小数点向右移动两位,同时


在后面添上百分号。其实,把小数化成百分数,只要把这个


小数乘以< /p>


100


%就行了。


30


、把百分数化成小数,只要把百分号去掉,同时把小数点


向左移动两位。



31


< p>
把分数化成百分数,


通常先把分数化成小数


(除不 尽时,


通常保留三位小数),再把小数化成百分数。其实,把分数


化成百分数,


要先把分数化成小数后,


再乘以


100


%就行了。



32


、把百分数化成分数,先把百分数改写成分数,能约分的


要约成最简 分数。



33


、要学会把小数化成分数 和把分数化成小数的化发。



34


、最 大公约数:几个数都能被同一个数一次性整除,这个


数就叫做这几个数的最大公约数。( 或几个数公有的约数,


叫做这几个数的公约数。其中最大的一个,叫做最大公约


数。)



35


、互质数 :公约数只有


1


的两个数,叫做互质数。



36


、最小公倍数:几个数公有的倍数,叫做这几个数的公 倍


数,其中最小的一个叫做这几个数的最小公倍数。



37


、通分:把异分母分数的分别化成和原来分数相等的同分

< p>
母的分数,叫做通分。(通分用最小公倍数)



3 8


、约分:把一个分数化成同它相等,但分子、分母都比较


小的 分数,叫做约分。(约分用最大公约数)



39



最简分数:


分子、


分母是互 质数的分数,


叫做最简分数。



40< /p>


、分数计算到最后,得数必须化成最简分数。


< br>41


、个位上是


0


< p>
2



4



6



8


的数,都能被


2


整除,即能用


2


进行



42


、约分。个位上是


0


或者


5


的数,都能被


5


整除,即能用


5


进行约分。在约分时应注意利用。



43


、偶数和奇数:能被


2


整除的数叫做偶数。不能被

< p>
2


整除


的数叫做奇数。



44


、质数(素数):一个数,如果只有


1


和它本身两个约数,


这样的数叫做质数(或素数)。



45


、合数:一个数,如果除了

< p>
1


和它本身还有别的约数,这


样的数叫做合数。< /p>


1


不是质数,也不是合数。


< p>
46


、利息=本金×利率×时间(时间一般以年或月为单位,


应与利率的单位相对应)



47

、利率:利息与本金的比值叫做利率。一年的利息与本金


的比值叫做年利率。一月的 利息与本金的比值叫做月利率。



48


、自然数:用来表示物体个数的整数,叫做自然数。


0



是自然数。



49


、 循环小数:一个小数,从小数部分的某一位起,一个数


字或几个数字依次不断的重复出现 ,这样的小数叫做循环小


数。如


3. 141414


50


、不循环小数:一个小数,从小数部分起,没有一个数字

< p>
或几个数字依次不断的重复出现,这样的小数叫做不循环小


数。如圆周率:


3. 141592654


51


、< /p>


无限不循环小数:


一个小数,


从小数部分 起到无限位数,


没有一个数字或几个数字依次不断的重复出现,这样的小数


叫做无限不循环小数。如


3. 141592654


……



52


、什么叫代数


?


代数就是用字母代替数。



53


、什么叫代数式


?


用字母表示的式子叫做代数 式。如:


3x


=ab+c


关系表达式



1


、每份数×份数=总数总数÷每份数=份数总数÷份数=


每份数



2



1


倍数×倍数=几倍数几倍数÷


1


倍数=倍数几倍数÷

< p>
倍数=


1


倍数


3


、速度×时间=路程路程÷速度=时间路程


÷时间=速度



4


、单价×数量=总价总价÷单价=数量总价÷数 量=单价



5


、工作效率×工作时间= 工作总量工作总量÷工作效率=


工作时间工作总量÷工作时间=工作效率



6


、加数+加数=和和-一个加数=另一个加数



7


、被减数-减数=差被减数-差=减数 差+减数=被减数



8


、因数×因数= 积积÷一个因数=另一个因数


-


-


-


-


-


-


-


-