数学专业英语第二版-课文翻译-converted

别妄想泡我
995次浏览
2021年02月23日 08:34
最佳经验
本文由作者推荐

-

2021年2月23日发(作者:中秋节几月几号)


2.4


整数、有理数与实数


4



A


Integers and rational numbers



There exist certain subsets of R which are distinguished because they have special


properties


not shared


by all real numbers. In


this


section we shall discuss such subsets, the


integers and the rational numbers.


有一些



R


的子集很著名,因为他们具有实数所不具备的特殊性质。在 本节我们将讨论这样


的子集,整数集和有理数集。



To introduce the positive integers we begin with the number 1, whose existence


is


guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on.


The numbers


1,2,3,…,


obtained in this way by repeated addition of 1 are all positive, and


they are called the positive integers.


我们从数字


1


开始介绍正整数,公理


4


保证了


1


的存在性。


1+1




2


表示,


2+1




3


表< /p>


示,以


此类推,由


1


重复累加的方式得到的数字


1,2,3




都是正的,它们被叫做正整数。



Strictly speaking, this description of the positive integers is not entirely complete


because we have not explained in detail what we mean by the expressions


“and so on”,


or “repeated addition of 1”.



严格地说,这种关于正整数的描述是不完整的,因为我 们没有详细解释



等等



或者



1



重复累加



的含义。



Although the intuitive meaning of expressions may seem clear, in careful treatment


of the real-number system it is necessary to give a more precise definition


of the positive


integers. There are many ways to do this. One convenient method is to introduce first the


notion of an inductive set.


虽然这些说法的直观意思似乎是清楚的, 但是在认真处理实数系统时必须给出一个更准确


的关于正整数的定义。

< br>


有很多种方式来给出这个定义,一个简便的方法是先引进归纳集的


概念。



DEFINITION


OF


AN


INDUCTIVE


SET.


A




set



of




real




number


s



is




cal


led




an



i


n


ductiv


e


set


if it


has the following two properties:


(a)


(b)


The number


1


is in


the


set.



For every x in the


set,


the number x+


1


is


also in the


set.



For example, R is an inductive set. So is the set . Now we shall define the positive


integers to be those real numbers which belong to every inductive set.


现在我们来定义正整数,就是属于每一个归纳集的实数。



Let


P



d


enote


t


he


s


et


o


f


a


ll


p


ositive


i


ntegers.


T


hen


P



i


s


i


tself


a


n


i


nductive set


b


ecause


(


a)


i


t



contains


1


,


a


nd


(


b)


i


t



c


ontains


x


+1


w


henever


i


t


c


ontains


x


.


Since the


m


embers


o


f



P



b


elong


t


o


e


very


inductive


s


et,


w


e


r


efer


t


o


P



a


s


t


he


s


mallest


i


nductive set.




P


表示所有正整数的集合。那么


P


本身是一个归纳集,因为其中含


1


, 满足


(a)


;只要


包含



x


就包含



x+


1,


满足


(b)


。由于


P


中的元素属于每一个归纳集,因此


P


是最小的归纳集。



This property of P forms the logical basis for a type of reasoning that mathematicians


call


proof by


induction, a


detailed discussion


of which


is given


in Part 4 of this introduction.


P


的这种性质形成了一种推理 的逻辑基础,数学家称之为,在介绍的第四部分将给出这种


方法的详细论述。归纳证明< /p>



The negatives of the positive integers are called the negative integers. The positive


integers, together with the negative integers and 0 (zero), form a set Z which we call simply


the set of integers.


正整数的相反数被叫做负整数。正整数,负整数和 零构成了一个集合


Z


,简称为整数集。


In


a


t


horough


t


reatment


o


f


t


he


r


eal-number


s


ystem,


i


t


w


ould


b


e


n


ecessary


a


t


t


his stage to prove


certain theorems about integers. For example, the sum, difference, or


product


of


two


integers


is


an


integer,


but


the


quotient


of


two


integers


need


not


to ne an integer. However, we shall not enter into the details of such proofs.


在实数系统中,


为了周密性,此时有必要证明一些整数的定理。例如,两个整数的和、< /p>



差和积仍是整数,但是商不一定是整数。然而还不能给出证明的 细节。



Quotients of integers a/b (where


b≠0)


are called rational numbers. The set of rational


numbers, denoted by Q, contains Z as a subset. The reader should realize that all the field


axioms and the order axioms are satisfied by Q. For this reason,


we say that the set of


rational numbers is an ordered field. Real numbers that are not in Q are called irrational.


整数


a



b


的商被叫做有理数,有理数集用


Q


表示,


Z



Q


的子集。读者应该认识到


Q



足所有的域公理和序公理。因此说有理数集是一个有序的域。不是有理数的实数被称为无 理数。



4



B


Geometric interpretation of real numbers as points on a line



The reader is undoubtedly familiar with the geometric interpretation of real numbers


by means of points on a straight line. A point is selected to represent 0 and another, to the


right


of


0,


to


represent


1,


as


illustrated


in


Figure


2


-4-1.


This choice determines the scale.

< p>
毫无疑问,读者都熟悉通过在直线上描点的方式表示实数的几何意义。如图


2-4-1


所示,




择一个点表示


0


,在


0


右边的另一个点表示


1


。这种做法决定了刻度。



If one adopts an appropriate set of axioms for Euclidean geometry, then each


real


number corresponds to exactly one point on this line and, conversely, each point on the line


corresponds to one and only one real number.


如果采用欧式几何公理中一个恰当的集合,那么每一个实数 刚好对应直线上的一个点,



反之,直线上的每一个点也对应且只对应一个实数。



For this reason the line is often called the real line or the real axis, and it is customary


to use the words real number and point interchangeably. Thus we often speak of the point


x


rather than the point corresponding to the real number.


为此直线通常被叫做实直线或者实轴,习惯上使用



实数



这个单词,而不是






此我们经常说点



x


不是指与实数对应的那个点。



This device for representing real numbers geometrically is a very worthwhile aid that


helps us to discover and understand better certain properties of real numbers. However,


the reader should realize that all properties of real numbers that


are


to


be


accepted


as


theorems must be deducible from the axioms without any references to geometry.


这种几何化的表示实数的方法是非常值得推崇的,它有助于帮助我们发现和理解实数的某


些性质。然而,读者应该认识到,拟被采用作为定理的所有关于实数的性质都必须不借助于几何


就能从公理推出。


-


-


-


-


-


-


-


-