数学专业英语课后答案
-
2.1
数学、方程与比例
词组翻译
1.
数学分支
branches of
mathematics
,算数
arithmetics
,几何学
geometry
,代数学
algebra
,三角学
trigonomet
ry
,高等数学
higher
mathematics
,初等数学
elementary <
/p>
mathematics
,高等代数
hi
gher
algebra
,数学分析
mathematical
analysis
,函数论
function
theory
,微分方程
differential
equation
2.
命题
prop
osition
,公理
axiom
,公
设
postulate
,定义
defi
nition
,定理
theorem
,
引
理
lemma
,推论
deduction
3.
形
form
,数
number
,数字
numeral
,数值
numerical value
,图形
figure
p>
,公式
formula
,符号
notation(symbol)
,记法
/
记号
sign
,图表
chart
4.
概念
conception
,相等
equality
,成立
/
真
true
,不成立
/
不真
untrue
,等式
equation
,恒等式
identity
,条件等式
equation of condition
,项
/
术语
term
,集
s
et
,
函数
function
,常数
constant
,方程
equation
,线性方程
linear
equation
,二次方程
quadratic
equation
5.
运算
oper
ation
,加法
addition
,
减法
subtraction
,乘法
m
ultiplication
,除法
division
,证明
proof
,推理
deduction
,逻辑推理
logical
deduction
6.
测量土地
to measure
land
,推导定理
to deduce
theorems
,指定的运算
indicated
operation
,获得结论
to
obtain the
conclusions
,占据中心地位
to occupy
the centric
place
汉译英
(
1
)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研
究等活动。
Mathematics comes from man’s social
practice, for example, industrial and agricultural
production, commercial activities,
military operations and scientific and
technological
researches.
<
/p>
(
2
)如果没有运用数学,任何一个科学
技术分支都不可能正常地发展。
No modern scientific and technological
branches could be regularly developed without
the application of mathematics.
(
3
)符号
在数学中起着非常重要的作用,它常用于表示概念和命题。
Notations are a special and powerful
tool of mathematics and are used to express
conceptions and propositions very
often.
(
4
)
17
世纪之前,人们局限于初等数学,即几何、三角和代数,那时只考虑常
< br>数。
Before
17th century, man confined himself to the
elementary mathematics, i. e. ,
geometry, trigonometry and algebra, in
which only the constants were considered.
(
5
)方程
与算数的等式不同在于它含有可以参加运算的未知量。
Equation is different from arithmetic
identity in that it contains unknown quantity
which
can join operations.
(
6
)方程又称为条件等式,因为其中
的未知量通常只允许取某些特定的值。
Equipment is called an equation of
condition in that it is true only for certain
values of
unknown quantities in it.
(
7
)方程
很有用,可以用它来解决许多实际应用问题。
Equations are of very great use. We can
use equations in many mathematical problems.
(
8
)解方
程时要进行一系列移项和同解变形,最后求出它的根,即未知量的值。
To solve the equation means
to move and change the terms about without making
the
equation untrue, until the root of
the equation is obtained, which is the value of
unknown
term.
英译汉
a has evolved
from the operations and rules of study of
arithmetic begins with
addition,multiplication,subtraction,and division
of
numbers:4+7,37×
682,49-22,
4
0
÷
8.
In algebra we introduce symbols or
letters
—
such as
a,b,c,d,x,y,z
—
to denote
arbitrary numbers
and
,
instead of special
cases
,
we often consider
general statements
:
a+b,cd,x-
y,
x
÷
a.
代数是从算术的运算和规则当中逐渐发展起来的,算术的研究是从数的加减
乘除开始的
。例如
4+7
,
3
7
×
682
,
49-22
,
4
0
÷
8
。
在代数学里
,
我们采用符号或字母。例如
< br>a,b,c,d,x,y,z
来表示任意的数字,而
不考
虑那些特殊情况。我们经常考虑的是一般的表达式,例如
a+b,cd,x-y,
x
÷
a
。
language of algebra serves a
twofold ,we may use it as a shorthand
to abbreviate and simplify long or
complicated ,it proves a convenient
means of generalizing many specific
statements.
代数的语言有两个作用。第一个是使用它作为一种速记法去缩
减和减化那些又长又
复杂的表达。第二,它被证明是一种概括许多具体的表达方式的便捷
途径。
expressions involve two
or more ng symbols tell us which
operation is to be done common
grouping symbols are
parentheses,(),brackets.[],and the
fraction bar,
—
.For
example,in the expression
2(3+4),we do
the addition first and then we do the
multiplication:2(3+4)=2(7)=14.
许多数学表达式包
含两个或更多的运算。分组符号告诉我们哪一个运算先做。常见
的分组符号是圆括号,方
括号和分数线。例如,在数学表达公式
2
(
3+4
)里。我
们先做加法再做乘法
2
(
3+4
)
=2
(
7
)
=14
2.2
几何与三角
词组翻译
1.
学会
institution
,建筑师
architect,
机械师
machinist,
制图员
draftsman,
测量者
surveyor,
木匠
carpenter
2.
点
point,
端点
endpoint,
线
line,
直线
straight line,
线段
line segment,
曲线
curved
line,
折线
broken line,
射线
ray ,
平面
plane,
曲面
curved surface
3.
立体
solid,
柱体
cylinder,
立方体
p>
cube,
球
sphere,
棱锥
pyramid
,
圆锥
cone ,
4.
圆
circle,
圆心
center,
直径
diameter,
半径
radius,
半圆
semicircle,
弦
chord,
弧
arc,
优弧
major arc,
劣弧
minor arc
5.
角
angle,
边
side,
三角形
triangle,
直角三角形
right
triangle,
斜边
hypotenuse,
直
角边
right-angle
side
6.
长度
length,<
/p>
宽度
breadth/width,
厚度
thickness,
位置
position
7.
几何的
geometrical,
立体的
three-dimensional ,
弯曲的
curved,
等距离的
equidistant ,
无限的
infinite
8.
培养创造力
train
originality,
必须的毅力
necessary perseverance ,
提高鉴赏力
raise/improve the
appreciation ability
9.
消失了的边界
vanishing
boundaries/landmarks,
有序性和优美感
orderliness and
sense of
beauty,
几何图形大量存在
geometric
forms abound in ,
定理成立的先决
条件
a
prerequisite to a theorem
汉译英
(
1
)许多专家都认为数学是学习其他科学技术的必备基础和先决条件。
Many experts recognize
that mathematics is the necessary foundation and
prerequisite of
studying other science
technology.
(
2
p>
)西方国家的专家认为几何起源于巴比伦和埃及人的土地测量技术,其实中国
古代的数学
家对几何做了许多出色的研究。
The western experts think that geometry
had its origin in the measurements by the
Babylonians and Egyptians of their
lands. Infect, the ancient Chinese mathematicians
made much remarkable study for
geometry.
(
3
)几何的学习使学生在思考问题时更周密和审慎,他们将不会盲目接受任何结
论。
In studying
geometry, the student is taught to think clearly
and critically and he is led
away from
the practice of blind acceptance of any
conclusions.
(
4<
/p>
)数学培养学生的分析问题的能力,使他们能应用毅力、创造性和逻辑推理来
解决问题。
Studying mathematics can develop the
students’ ability to analy
ze problems
and utilizing
perseverance,
originality, and logical reasoning in solving the
problem.
(
5
)几何主要不是研究数,而是形,例如三角形,平行四边形和圆,虽然它也与
数有关。
Geometry
mainly studies hot numbers but figures such as
triangles, parallelograms and
circles,
though it is related with numbers.
(
6
)一个立体(图形)有长、宽和高;面(
曲面或平面)有长和宽,但没有厚
度;线(直线
或曲线)有长度,但既没有宽度,也没有厚度;点只有位置,却没
有大小。<
/p>
A solid (figure)
has length, width and height. A surface (curved
surface or plane surface)
has length
and width, but no thickness. A line (straight line
or curved line) has length, but
no
width and thickness. A point has position, but no
dimension.
(
7
)射线从某个点出发无限延伸;两条从同一点出发的射线构成了角。这两条射
< br>线称为这个
角的两边,当这两边位于同一直线上且方向
相反时,所得的角是平
角。
A ray starts from a point and extends
infinitely far. Two rays starting from one point
form
an angle, which are called two
edges of the angle. When two edges lie in the same
line
and have opposite direction named
plane angle.
(
8<
/p>
)平面上的闭曲线当其中每一点到一个固定点的距离均相等时叫做圆。这个固
定点称为圆
心,经过圆心且其两个端点在圆周上的
线段称为这个圆的直径,直径
的一半叫做半径,这条
曲线的长度叫做周长。
A circle is a closed curve lying in one
plane, all points of which are equidistant from a
fixed point. The fixed point called the
center. A diameter of a circle is a line segment
through the center of the circle with
endpoints on the circle. Half of the diameter is
called
radius. The length of the circle
is called circumference.
英译汉
geometry an angle is
defined as the set of points determined by two
rays l
1
and
l
2
having the same endpoint
O.
在几何学里从同一点
O
出发引出
的两
条射线
l
1
和
l
2
所组成的点的集合叫做角。<
/p>
trigonometry we often interpret angles as
rotations of obtain an angle we
may
start with a fixed ray
l
1
having endpoint O,and
rotate it about O,in a plane,to a
position specified by ray
l
2
.We call
l
1
the initial
side, l
2
the terminal
side,and O the
vertex of angle.
在三角学里,我们经常解释角就是射线的旋转。在平面上,我
们许会从端点是
O
的射线
l
1
开始让它绕着端点
O<
/p>
旋转,转到一个位置,由射
线
l
2
标注。我们把
l
1<
/p>
叫做角的始边,
l
2
叫做角的终边,
O
叫做角的顶点。
3.A right angle
is a 90
angle . An angle
is acute if 0
p>
<
<90
p>
or obtuse if
90
<
<180
p>
.A straight angle is a
180
angle .Two acute angles
are complementary
if their sum is
90
.Two positive angles are
supplementary if their sum is
180
.
直
角就是一个
90
的角。如果
0
<
<90
把它叫做锐角
,如果
90
<
<180
叫做
< br>钝角。平角就是一个
180
的
角。如果两个锐角的和是
90
,那么
这两个角互为
余角。如果两个正角的和是
180
,那么这两个角是互为补角。
2.3
集合论的基本概念
单词、词组
1.1
集
s
et
,子集
subset
,真子集
p>
proper
subset
,全集
universal
subset
,空集
void/
empty set
,基地集
the
underlying set
1.2
正数
positive
number
,偶数
even integer
,图形
diagram
,文氏图
Venn
diagram
,
哑标
dummy
index
,大括号
brace
1.3
可以被整除的
be divisible
by
,两两不同的
distinct from each o
ther
,确定的
definite
,
无关紧要的
irrelevant/inessential
1.4
一样的结论
the same
conclusion
,等同的效果
equivalent
effect
,用大括号表示集
sets are
designated by braces
,把这个图形记作
A
:
this diagram is designated
by
letter
A
,区别对象
to distinguish between
objects
,证明定理
to prove
theorems
,
把结论可视化
to
visualize conclusions/consequences
汉译英
(
1
)由小于
10
且能被
3
整除的正整数组成的集是整数集的子集。
The set consisting of those
positive integers less than 10 which are divisible
by 3 is a
subset of the set of all
integers.
(
2
)如果方便,我们通过在括号中列举元素的办法来表示集。
When convenient, we shall
designate sets by displaying the elements in
braces.
(
3
)用符号
表示集的包含关系,也就是说,式子
A
B
表示
A
包含于
B
。
The relation
is referred to as set inclusion;
A
B means that A is
contained in B.
(
4
)命题
A
B
并不排除
B
A
的可能性。
The statement A
B
does not rule out the possibility that
B
A.
(
5
)基础集可根据使用场合不同而改变。
The underlying set may
vary from one application to another according to
using
occasions.
(
6
)为了避免逻辑上的困难,我们必须把元素
x
与仅含有元素
x
的集
{x}
区别开
来。
To avoid logical difficulties, we must
distinguish between the element x and the set {x}
whose only element is x.
p>
(
7
)图解法有助于将集合之间的关系形象
化。
Diagrams
often help using visualize relationship between
sets.
(
8
< br>)定理的证明仅仅依赖于概念和已知的结论,而不依赖于图形。
The proofs of theorems rely
only on the definitions of the concepts and known
result, not
on the diagrams.
英译汉
A is the set of all the letters of the
alphabet
,
then listing each
of elements would be
tedious. So we
write A={a,b,c,
…
,z}.
如果
A
是所有字母的集合,那么把每一个其中的字母列
举出来将是很冗长乏味
的,因此我们写出
A=
< br>{
a
,
b
,
c
,
…
,
z
}。
the set
A
,
the last element is z.
Many sets do not have last elements . Two
important
sets are N , the set of
natural numbers , and W , the set of whose numbers
. To list all the
elements in these
sets would be impossible because they go on
forever . So we use three
dots and
write N={1,2,3,
…
},W={0,1,2,3
,
…}
.
在集合
A
里
,
最后一个元素是
z
,许多集合没有最后一个元素,两个重要的集合是
N
,自然数集合,和
W
,整数的集合
。把这两个集合里所有的元素列举出来是不可
能的,因为它们是永远持续下去的,所以我
们用三个点来表示,集合
N
写成
N={
1,2,3,
…
}
,集合
W
写成
W={0,1,2,3
,
…}
。
whole numbers have many important subsets . A
whole number is said to be even
if it
is divisible by 2
;
2,6,and 18
are examples of even numbers. A whole number is
said
to be odd if it is not divisible
by 2 1,7,and 13 are examples of odd numbers .
The natural
numbers greater than 1 are
called prime or composite , A number is prime if
it is divisible
only by 1 and itself ,
A number is composite if it is divisible by a
natural number other
than 1 and itself.
整数有许多重要的子集。如果一个整数能被
2
< br>除开就是偶数;
2
,
6
,
18
就是偶数
的例子
。一个整数如果不能被
2
整除就是奇数;
1
,
7
,
1
3
就是奇数的例子。大于
1
的自然数叫
做素数或者合数,如果一个自然数只能被
1
和它本身整除,那么
这个数
就是素数(质数),如果一个自然数除了能被
1
和它本身整除外,还可以被其他的
自然数整除,就叫做合数。