数学专业英语中英文对照翻译2.5
-
2.5
笛卡尔几何学的基本概念
(
basic concepts of Cartesian
geometry
)
课文
5-A the coordinate system
of Cartesian geometry
As
mentioned earlier, one of the applications of the
integral is
the
calculation
of
area.
Ordinarily
,
we
do
not
talk
about
area
by
itself ,instead, we talk about the area
of something . This means that
we
have
certain
objects
(polygonal
regions,
circular
regions,
parabolic segments
etc.) whose areas we wish to measure. If we hope
to arrive at a treatment of area that
will enable us to deal with many
different
kinds
of
objects,
we
must
first
find
an
effective
way
to
describe these objects.
The most primitive way of doing this is
by drawing figures, as
was done by the
ancient Greeks. A much better way was suggested by
Rene
Descartes,
who
introduced
the
subject
of
analytic
geometry
(also
known
as
Cartesian
geometry).
Descartes’
idea
was
to
represent
geometric points by numbers. The procedure for
points in a
plane is this
:
Two
perpendicular reference lines (called coordinate
axes) are
chosen,
one
horizont
al
(called
the
“x
-
axis”),
the
other
vertical
(the
“y
-
axis”).
Their
point
of
intersection
denoted
by
O,
is
called
the
origin.
On
the
x-axis
a
convenient
point
is
chosen
to
the
right
of
O
and its
distance from O is called the unit distance.
Vertical distances
along
the
Y-axis
are
usually
measured
with
the
same
unit
distance ,although
sometimes it is convenient to use a different
scale
on
the
y-axis.
Now
each
point
in
the
plane
(sometimes
called
the
xy-
plane) is assigned a pair of numbers, called its
coordinates. These
numbers tell us how
to locate the points.
Figure
2-5-1
illustrates
some
point
with
coordinates
(3,2)
lies
three
units
to
the
right
of
the
y-axis
and
two
units above the number 3 is called the
x-coordinate of the
point,2 its
y-coordinate. Points to the left of the y-axis
have a negative
x-coordinate; those
below the x-axis have a negtive y-coordinate. The
x-coordinateof
a
point
is
sometimes
called
its
abscissa
and
the
y-coordinateis called
its ordinate.
When
we
write
a
pair
of
numberssuch
as
(a,b)
to
represent
a
point, we agree that the abscissa or
x-coordinate,a is written first. For
this reason, the pair(a,b) is often
referred to as an ordered pair. It is
clear that two ordered pairs (a,b) and
(c,d) represent the same point
if and
only if we
have a=c
and
b=d.
Points
(a,b)
with
both
a and
b
positiveare said to lie in the first
quadrant ,those with a<0 and b>0
are in
the second quadrant and those with a<0 and b<0
are in the
third
quadrant
;
and
those
with
a>0
and
b<0
are
in
the
fourth
quadrant. Figure 2-5-1 shows one point
in each quadrant.
The
procedure
for
points
in
space
is
similar.
We
take
three
mutually
perpendicular
lines
in
space
intersecting
at
a
point
(the
origin)
.
These
lines
determine
three
mutually
perpendicular
planes
,and
each
point
in
space
can
be
completely
described
by
specifying , with appropriate regard
for signs ,its distances from these
planes.
We
shall
discuee
three-dimensional
Cartesian
geometry
in
more
detail
later
on
;
for
the
present
we
confine
our
attention
to
plane analytic geometry.
p>
课文
5-A
:笛卡尔几何坐标系
正如前面所提到的,
积分应用的一种是计算面积
。
通常我们不单
独讨论面积,
我们还讨
论其它物体的面积。
这意味着我们有特定的物
体
(
多边形
,
圆域
,
抛物弓形等
)
希望能测量
。如果我们希望获得面积的
计算方法以便能用它来处理多种不同类型的图形,
我们就必须首先找
出描述这些图形的有效方法。
做这件事的最原始的方法就是描绘出图形,
就如古希腊人所作的
那样。
笛卡尔
(1596-1650)
提出了一种好得多的方法并建立了解析几何
(
< br>也称为笛卡尔几何
)
这个学科。笛卡尔的思想就是用数字
来代表几何
中的点,对应点的过程如下:
选取两条相互垂直的线
(
称为坐标轴
)
,一条水平的
(
称为
x
轴
)
,
< br>另一条是垂直
(
称为
y
轴
)
,
它们的交点记为
O,
称为原点。
在
x
轴上
O
右边选定一个适当的点,
并把它到
O
的距离称为单位长度。沿着
y
轴的竖直距离通常也用相同的单位长度来测量,
不过有时采用
不同的
尺度较为方便。现在平面
(
有时
叫
xy
平面
)
上的每个点都对应一个数
对,称它为坐标。这些数对告诉我们如何定为一个点。
图
2-5-1
说明了
一些例子。坐标
(3,2)
的点位于
y
轴右边三个单位
且在
x
轴上方两个单位长度的地方。
3
称为该点的
x
坐标,
2
称为该
点的
y
坐标。
y
p>
轴左边的点有负的
x
坐标,那些
x
轴下方的点有负的
y
坐
标。点的
x
坐标有时称为横坐标,
y<
/p>
坐标称为纵坐标。
当我们用一对数如<
/p>
(a,b)
代表一个点时,我们商定横坐标,
x
坐标
也就是
a
< br>写在第一位。
由于这个原因,
数对
(a,b)
是一个有序数对。
很
明显
,当且仅当
a=c
,
b=d
时,两个有序数对
(a,b)
和
< br>(c,d)
代表同一个
点。点
(
a,b)
当
a,b
同为正时,该点位于
第一象限,当
a<0,b>0
时位于
第
二象限,
当
a<0,b<0
时位于第三
象限,
当
a>0,b<0
时位于第四象
限。
图
2-5-1
画出了每个象限的一
个点。
在空间中点的表示方法是相似的。我们取空间中交于一
点
(
原点
)
的
三条相互垂直的线。
这些线决定了三个相互垂直的平面,
且空间
中
的每一个点通过它到三个平面的距离选取合适的记号,
都能完
全具体
的指定出来。
我们之后应该更细节的讨论三维笛卡尔几何
,
目前我们
限制于关注平面解析几何。