数学专业英语中英文对照翻译2.5

绝世美人儿
578次浏览
2021年02月23日 09:00
最佳经验
本文由作者推荐

-

2021年2月23日发(作者:巧点)


2.5


笛卡尔几何学的基本概念




basic concepts of Cartesian geometry





课文


5-A the coordinate system of Cartesian geometry



As mentioned earlier, one of the applications of the integral is


the


calculation


of


area.


Ordinarily


,


we


do


not


talk


about


area


by


itself ,instead, we talk about the area of something . This means that


we


have


certain


objects


(polygonal


regions,


circular


regions,


parabolic segments etc.) whose areas we wish to measure. If we hope


to arrive at a treatment of area that will enable us to deal with many


different


kinds


of


objects,


we


must


first


find


an


effective


way


to


describe these objects.


The most primitive way of doing this is by drawing figures, as


was done by the ancient Greeks. A much better way was suggested by


Rene


Descartes,


who


introduced


the


subject


of


analytic


geometry


(also


known


as


Cartesian


geometry).



Descartes’


idea


was


to


represent geometric points by numbers. The procedure for points in a


plane is this





Two perpendicular reference lines (called coordinate axes) are


chosen,


one


horizont


al


(called


the


“x


-


axis”),


the


other


vertical


(the


“y


-


axis”).


Their


point



of


intersection


denoted


by


O,


is


called


the


origin.


On


the x-axis


a


convenient


point


is


chosen


to


the


right


of


O


and its distance from O is called the unit distance. Vertical distances


along


the


Y-axis


are


usually


measured


with


the


same


unit


distance ,although sometimes it is convenient to use a different scale


on


the


y-axis.


Now


each


point


in


the


plane


(sometimes


called


the


xy- plane) is assigned a pair of numbers, called its coordinates. These


numbers tell us how to locate the points.






Figure


2-5-1


illustrates


some



point


with


coordinates


(3,2)


lies


three


units


to


the


right


of


the


y-axis


and


two


units above the number 3 is called the x-coordinate of the


point,2 its y-coordinate. Points to the left of the y-axis have a negative


x-coordinate; those below the x-axis have a negtive y-coordinate. The


x-coordinateof


a


point


is


sometimes


called


its


abscissa


and


the


y-coordinateis called its ordinate.


When


we


write


a


pair


of


numberssuch


as


(a,b)


to


represent


a


point, we agree that the abscissa or x-coordinate,a is written first. For


this reason, the pair(a,b) is often referred to as an ordered pair. It is


clear that two ordered pairs (a,b) and (c,d) represent the same point


if and only if we


have a=c


and


b=d.


Points


(a,b) with


both


a and


b


positiveare said to lie in the first quadrant ,those with a<0 and b>0


are in the second quadrant and those with a<0 and b<0 are in the


third


quadrant


;


and


those


with


a>0


and


b<0


are


in


the


fourth


quadrant. Figure 2-5-1 shows one point in each quadrant.


The


procedure


for


points


in


space


is


similar.


We


take


three


mutually


perpendicular


lines


in


space


intersecting


at


a


point


(the


origin)


.


These


lines


determine


three


mutually


perpendicular


planes


,and


each


point


in


space


can


be


completely


described


by


specifying , with appropriate regard for signs ,its distances from these


planes.


We


shall


discuee


three-dimensional


Cartesian


geometry


in


more


detail


later


on


;


for


the


present


we


confine


our


attention


to


plane analytic geometry.



课文


5-A


:笛卡尔几何坐标系

< p>


正如前面所提到的,


积分应用的一种是计算面积 。


通常我们不单


独讨论面积,


我们还讨 论其它物体的面积。


这意味着我们有特定的物



(


多边形


,


圆域


,


抛物弓形等


)


希望能测量 。如果我们希望获得面积的


计算方法以便能用它来处理多种不同类型的图形,

< p>
我们就必须首先找


出描述这些图形的有效方法。



做这件事的最原始的方法就是描绘出图形,


就如古希腊人所作的


那样。


笛卡尔


(1596-1650)


提出了一种好得多的方法并建立了解析几何


(

< br>也称为笛卡尔几何


)


这个学科。笛卡尔的思想就是用数字 来代表几何


中的点,对应点的过程如下:


选取两条相互垂直的线


(


称为坐标轴


)


,一条水平的


(


称为


x



)


< br>另一条是垂直


(


称为


y



)



它们的交点记为


O,


称为原点。


x


轴上


O


右边选定一个适当的点, 并把它到


O


的距离称为单位长度。沿着


y


轴的竖直距离通常也用相同的单位长度来测量,


不过有时采用 不同的


尺度较为方便。现在平面


(


有时 叫


xy


平面


)


上的每个点都对应一个数


对,称它为坐标。这些数对告诉我们如何定为一个点。




2-5-1


说明了 一些例子。坐标


(3,2)


的点位于


y


轴右边三个单位


且在


x


轴上方两个单位长度的地方。


3


称为该点的

< p>
x


坐标,


2


称为该


点的


y


坐标。


y


轴左边的点有负的


x


坐标,那些

< p>
x


轴下方的点有负的


y


坐 标。点的


x


坐标有时称为横坐标,


y< /p>


坐标称为纵坐标。



当我们用一对数如< /p>


(a,b)


代表一个点时,我们商定横坐标,

x


坐标


也就是


a

< br>写在第一位。


由于这个原因,


数对


(a,b)


是一个有序数对。



明显 ,当且仅当


a=c



b=d

< p>
时,两个有序数对


(a,b)


< br>(c,d)


代表同一个


点。点


( a,b)



a,b


同为正时,该点位于 第一象限,当


a<0,b>0


时位于


第 二象限,



a<0,b<0


时位于第三 象限,



a>0,b<0


时位于第四象 限。



2-5-1


画出了每个象限的一 个点。



在空间中点的表示方法是相似的。我们取空间中交于一 点


(


原点


)


的 三条相互垂直的线。


这些线决定了三个相互垂直的平面,


且空间 中


的每一个点通过它到三个平面的距离选取合适的记号,


都能完 全具体


的指定出来。


我们之后应该更细节的讨论三维笛卡尔几何 ,


目前我们


限制于关注平面解析几何。












-


-


-


-


-


-


-


-